Spaces:
Sleeping
Sleeping
File size: 2,372 Bytes
31801e9 da9a0aa 31801e9 da9a0aa 31801e9 da9a0aa 31801e9 da9a0aa 31801e9 da9a0aa 31801e9 da9a0aa 31801e9 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 |
import pandas as pd
import gradio as gr
def find_postcode_column(df):
# UK Gov postcode regex
postcode_pattern = r"([Gg][Ii][Rr] 0[Aa]{2})|((([A-Za-z][0-9]{1,2})|(([A-Za-z][A-Ha-hJ-Yj-y][0-9]{1,2})|(([A-Za-z][0-9][A-Za-z])|([A-Za-z][A-Ha-hJ-Yj-y][0-9][A-Za-z]?))))\s?[0-9][A-Za-z]{2})"
max_count = 0
postcode_column = None
for column in df.columns:
# Count matches of the postcode pattern in each column
matches = df[column].astype(str).str.match(postcode_pattern)
valid_count = matches.sum() # Sum of True values indicating valid postcodes
# Select the column with the maximum count of valid postcodes
if valid_count > max_count:
max_count = valid_count
postcode_column = column
return postcode_column
def get_lat_lon(postcodes_df, postcode_mapping):
try:
# Attempt to identify the postcode column dynamically
postcode_column = find_postcode_column(postcodes_df)
if not postcode_column:
raise ValueError("No valid postcode column found")
# Rename columns for consistency
postcode_mapping.rename(columns={'postcode': 'Postal code'}, inplace=True)
# Normalize postcodes to ensure matching and count occurrences
postcodes_df[postcode_column] = postcodes_df[postcode_column].str.lower().str.replace(' ', '')
postcode_counts = postcodes_df[postcode_column].value_counts().reset_index()
postcode_counts.columns = ['Postal code', 'count']
# Normalize the postcodes in the mapping DataFrame
postcode_mapping['Postal code'] = postcode_mapping['Postal code'].str.lower().str.replace(' ', '')
# Merge the counts with the mapping data
result_df = pd.merge(postcode_counts, postcode_mapping, on='Postal code', how='left')
# Fill NaN values for latitude and longitude where postcode was not found in the mapping
result_df['latitude'] = result_df['latitude'].fillna('')
result_df['longitude'] = result_df['longitude'].fillna('')
# Optionally, convert the DataFrame to a dictionary if needed, or work directly with the DataFrame
results = result_df.to_dict(orient='records')
except Exception as e:
raise Exception("Error processing postal codes: " + str(e))
return results |