Spaces:
Sleeping
Sleeping
import pandas as pd | |
import gradio as gr | |
def get_lat_lon(postcodes_df, postcode_mapping): | |
try: | |
postcode_mapping.rename(columns={'postcode': 'Postal code'}, inplace=True) | |
# Normalize postcodes to ensure matching and count occurrences | |
postcodes_df['Postal code'] = postcodes_df['Postal code'].str.lower().str.replace(' ', '') | |
postcode_counts = postcodes_df['Postal code'].value_counts().reset_index() | |
postcode_counts.columns = ['Postal code', 'count'] | |
# Normalize the postcodes in the mapping DataFrame | |
postcode_mapping['Postal code'] = postcode_mapping['Postal code'].str.lower().str.replace(' ', '') | |
# Merge the counts with the mapping data | |
result_df = pd.merge(postcode_counts, postcode_mapping, on='Postal code', how='left') | |
# Fill NaN values for latitude and longitude where postcode was not found in the mapping | |
result_df['latitude'] = result_df['latitude'].fillna('') | |
result_df['longitude'] = result_df['longitude'].fillna('') | |
# Optionally, convert the DataFrame to a dictionary if needed, or work directly with the DataFrame | |
results = result_df.to_dict(orient='records') | |
except: | |
raise gr.Error('Make sure your file contains the postal codes under a column named "Postal code"') | |
return results |