Spaces:
Sleeping
Sleeping
import pandas as pd | |
import gradio as gr | |
def find_postcode_column(df): | |
# UK Gov postcode regex | |
postcode_pattern = r"([Gg][Ii][Rr] 0[Aa]{2})|((([A-Za-z][0-9]{1,2})|(([A-Za-z][A-Ha-hJ-Yj-y][0-9]{1,2})|(([A-Za-z][0-9][A-Za-z])|([A-Za-z][A-Ha-hJ-Yj-y][0-9][A-Za-z]?))))\s?[0-9][A-Za-z]{2})" | |
max_count = 0 | |
postcode_column = None | |
for column in df.columns: | |
# Count matches of the postcode pattern in each column | |
matches = df[column].astype(str).str.match(postcode_pattern) | |
valid_count = matches.sum() # Sum of True values indicating valid postcodes | |
# Select the column with the maximum count of valid postcodes | |
if valid_count > max_count: | |
max_count = valid_count | |
postcode_column = column | |
return postcode_column | |
def get_lat_lon(postcodes_df, postcode_mapping): | |
try: | |
# Attempt to identify the postcode column dynamically | |
postcode_column = find_postcode_column(postcodes_df) | |
if not postcode_column: | |
raise ValueError("No valid postcode column found") | |
# Rename columns for consistency | |
postcode_mapping.rename(columns={'postcode': 'Postal code'}, inplace=True) | |
# Normalize postcodes to ensure matching and count occurrences | |
postcodes_df[postcode_column] = postcodes_df[postcode_column].str.lower().str.replace(' ', '') | |
postcode_counts = postcodes_df[postcode_column].value_counts().reset_index() | |
postcode_counts.columns = ['Postal code', 'count'] | |
# Normalize the postcodes in the mapping DataFrame | |
postcode_mapping['Postal code'] = postcode_mapping['Postal code'].str.lower().str.replace(' ', '') | |
# Merge the counts with the mapping data | |
result_df = pd.merge(postcode_counts, postcode_mapping, on='Postal code', how='left') | |
# Fill NaN values for latitude and longitude where postcode was not found in the mapping | |
result_df['latitude'] = result_df['latitude'].fillna('') | |
result_df['longitude'] = result_df['longitude'].fillna('') | |
# Optionally, convert the DataFrame to a dictionary if needed, or work directly with the DataFrame | |
results = result_df.to_dict(orient='records') | |
except Exception as e: | |
raise Exception("Error processing postal codes: " + str(e)) | |
return results |