File size: 13,401 Bytes
1d47317
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
# from alessandro
import re
import cv2
import numpy as np
from paddleocr import PaddleOCR
from PIL import Image
import matplotlib.pyplot as plt
import pandas as pd
import matplotlib.pyplot as plt

ocr = PaddleOCR(lang='sl')

# def convert_to_image(document):
#     '''
#     Function: converts the pdf to image
#     Input: pdf document
#     Output: image
#     '''

#     # reads PDFs
#     # reads only first page of PDF documents

#     # os.path.join(document.name, 'sample.pdf')
#     pdf_document = load_from_file(document)
#     page_1 = pdf_document.create_page(0)
#     images = renderer.render_page(page_1)
#     image_data = image.data
#     # convert the image to numpy array
#     image = np.array(images)   
#     # handles non-PDF formats (e.g., .tif)
#     # else:
#     #     images = Image.open(document)
#     #     # convert the image to RGB
#     #     image = images.convert('RGB')
#     #     # convert the image to numpy array
#     #     image = np.array(image)
#     #     # TODO: change to dynamic scaling
#     #     # downscale the image        
#     #     scale = 1.494
#     #     width = int(image.shape[1] / scale)
#     #     height = int(image.shape[0] / scale)
#     #     dim = (width, height)
#     #     image = cv2.resize(image, dim, interpolation = cv2.INTER_AREA)  
#     # fig, ax = plt.subplots(figsize=(15, 10))
#     # ax.imshow(image, cmap = 'gray')
#     return image


def deskew(image, model):
    '''
    Function: deskew an image
    Input: takes an image as an array
    Output: deskewed image
    '''

    # map the model classes to the actual degree of skew
    map = { 0: '-1', 1: '-10', 2: '-11', 3: '-12', 4: '-13',
            5: '-14',6: '-15', 7: '-2',  8: '-3',  9: '-4',
            10: '-5',11: '-6',12: '-7', 13: '-8', 14: '-9',
            15: '0', 16: '1', 17: '10', 18: '11', 19: '12',
            20: '13',21: '14',22: '15', 23: '180',24: '2',
            25: '270',26: '3',27: '4',  28: '5',  29: '6',
            30: '7',  31: '8',32: '9',  33: '90'}

    image_d = cv2.cvtColor(image, cv2.COLOR_BGR2GRAY)
    width = int(image_d.shape[1] * 0.2)
    height = int(image_d.shape[0] * 0.2)
    dim = (width, height)
    # resize image
    res = cv2.resize(image_d, dim, interpolation = cv2.INTER_AREA)  
    resized = cv2.resize(res, (200, 200))
    # add two dimensions to feed to the model 
    resized = resized.astype('float32').reshape(1, 200, 200 ,1)
    # normalize
    resized = resized/255  
    # predictions
    predictions = model.run(None, {'conv2d_input': resized})
    # best prediction
    pred = predictions[0].argmax()
    # angle of skew
    angle = int(map[pred])
    skew_confidence = predictions[0][0][pred] * 100
    # deskew original image
    if angle == 90:
        deskewed_image = cv2.rotate(image, cv2.ROTATE_90_COUNTERCLOCKWISE)
        return deskewed_image, angle, skew_confidence
    if angle == 270:
        deskewed_image = cv2.rotate(image, cv2.ROTATE_90_CLOCKWISE)
        return deskewed_image, angle, skew_confidence
    
    (h, w) = image.shape[:2]
    center = (w // 2, h // 2)
    M = cv2.getRotationMatrix2D(center, -angle, 1.0)
    deskewed_image = cv2.warpAffine(image, M, (w, h), flags=cv2.INTER_CUBIC,
                            borderMode=cv2.BORDER_REPLICATE)
    return deskewed_image, angle, skew_confidence


def prepare_image_to_autoencoder(image):
    '''
    Function: prepare the image to be passed to the autoencoder.
    Input: image (_type_): deskewed image
    Output: resized image to be passed to the autoencoder
    '''

    height, width = image.shape[:2]
    target_height = 600 
    target_width = 600
    image = image[int(height/3.6): int(height/1.87), int(width/3.67): int(width/1.575)]
    # reshape image to fixed size 
    image = cv2.resize(image, (target_width, target_height))
    image = cv2.cvtColor(image, cv2.COLOR_BGR2GRAY)
     # normalize images
    image = image / 255.0 
    # reshape to pass image to autoencoder
    image = image.reshape(target_height, target_width, 1) 
    return image


def autoencode_ONNX(image, model):
    '''
    Function: remove noise from image
    Input: image and autoencoder model
    Output: image
    '''

    image = image.astype(np.float32).reshape(1, 600, 600, 1)
    image = model.run(None, {'input_2': image})
    image = image[0]
    image = image.squeeze()
    image = image * 255
    image = image.astype('uint8')
    # fig, ax = plt.subplots(figsize=(8, 5))
    # ax.imshow(image, cmap = 'gray')
    return image


def detect_entries_ONNX(denoised, model):
    '''
    Function: detect boxes Priimek, Ime and Datum boxes
    Priimek: lastname
    Ime: firstname
    Datum smrti: date of death
    Input: image
    Output: boxes and confidence scores
    '''

    # the object detection model requires a tensor(1, h, w, 3)
    autoencoded_RGB = cv2.cvtColor(denoised, cv2.COLOR_GRAY2RGB)
    # adds the 1 to the tensor
    autoencoded_expanded = np.expand_dims(autoencoded_RGB, axis=0)
    detections = model.run(None, {'input_tensor': autoencoded_expanded})
    boxes = detections[1]
    confidence = detections[4]  # returns a ndarray in a list of list
    boxes = np.array(boxes[0])
    confidence = np.array(confidence).reshape(5, 1)
    boxes_and_confidence = np.append(boxes, confidence, axis=1)
    # reshapes the boxes to be sorted
    boxes_and_confidence = boxes_and_confidence.reshape(5, 5)
    # sorts
    boxes_and_confidence = \
        boxes_and_confidence[boxes_and_confidence[:, 0].argsort()]
    # boxes (expressed in image %)
    boxes = boxes_and_confidence[:, :-1]
    # boxes (expressed in actual pixels: ymin, xmin, ymax, xmax)
    boxes = boxes * 600
    # confidence boxes
    confidence_boxes = boxes_and_confidence[:, -1].tolist()

    for box in boxes:
      ymin, xmin, ymax, xmax = box.astype(int)
      cv2.rectangle(autoencoded_RGB, (xmin, ymin), (xmax, ymax), (0, 255, 0), 2)
    plt.figure()
    plt.imshow(cv2.cvtColor(autoencoded_RGB, cv2.COLOR_BGR2RGB))
    plt.title("Detected Boxes")
    plt.savefig("test.jpg")
    img = cv2.imread("test.jpg")
    return Image.fromarray(img), confidence_boxes

def extract_detected_entries_pdl(image):

    result = ocr.ocr(image, cls=False)

    # boxes = [line[0] for line in result]
    # txts = [line[1][0] for line in result]
    # scores = [line[1][1] for line in result]
    # im_show = draw_ocr(image, boxes, txts, scores, font_path ='/usr/share/fonts/truetype/liberation/LiberationMono-Regular.ttf')
    txt = []
    scores = []
    boxes = []
    for r in result[0]:
      txt.append(cleanString_basic(r[-1][0]))
      scores.append(r[-1][1])
      boxes.append(r[0])
    
    return pd.DataFrame(np.transpose([txt,scores, boxes]),columns = ["Text","Score", "Boundary Box"])

def cleanString_basic(word):
  word = word.replace("$", "s")
  return word

def clean_string_start(string: 'str'):

    names_flags = "√"
    chars_to_remove = ['!', "'", '[', ']', '*', '|', '.', ':', '\\', '/']
    if string.startswith(tuple(chars_to_remove)):
        names_flags = string[0]
        string = string[1:]
    return string, names_flags

def clean_string_end(string: 'str'):

    names_flags = "√"
    chars_to_remove = ['!', "'", '[', ']', '*', '|', '.', ':', '\\', '/']
    if string.endswith(tuple(chars_to_remove)):
        names_flags = string[-1]
        string = string[:-1]
    return string, names_flags

def clean_dates(date: 'str'):
    '''
    Function: cleans the fields "datum smrti" and returns the char removed.
    Input: date (string format)
    Output: cleaned frame
    '''

    date_flags = "Y"
    # finds special characters in the string
    special_char = re.findall(r'[a-zA-Z!\[\|]', date)
    if len(special_char) > 0:
        date_flags = special_char
    # remove special characters in the string
    string = re.sub(r'[a-zA-Z!\[\|]', '', date)
    return string, date_flags

def regex_string(string):
    '''
    Function: swaps the carachters with the "hat" with the regular ones
    Input: string
    Output: cleaned string
    '''
    map = {'Č': 'C',
       'č': 'c',
       'Š': 'S',
       'š': 's',
       'Ž': 'Z',
       'ž':'z'}
    for x in string:
        if x in map:
            string = string.replace(x, map[x])
    return string

import onnxruntime

def pdf_deskew_gr (document):
  img = convert_to_image(document)
  model = onnxruntime.InferenceSession("./models/CNN_deskew_v0.0.2.onnx")
  deskewed_image, angle, skew_confidence = deskew(img, model) 
  return deskewed_image, angle, skew_confidence

def pdf_clean_gr(document):
  img = convert_to_image(document)
  model = onnxruntime.InferenceSession("./models/CNN_deskew_v0.0.2.onnx")
  deskewed_image, angle, skew_confidence = deskew(img, model)
  img = prepare_image_to_autoencoder(img)
  model = onnxruntime.InferenceSession("./models/autoencoder_denoise_v0.0.2.onnx")
  img = autoencode_ONNX(img, model)
  return img

def pdf_resnet_gr(document):
  img = convert_to_image(document)
  model = onnxruntime.InferenceSession("/content/drive/MyDrive/cpo/Alessandro/ai_models/Latest/CNN_deskew_v0.0.2.onnx")
  deskewed_image, angle, skew_confidence = deskew(img, model)
  img = prepare_image_to_autoencoder(img)
  model = onnxruntime.InferenceSession("/content/drive/MyDrive/cpo/Alessandro/ai_models/Latest/autoencoder_denoise_v0.0.2.onnx")
  img = autoencode_ONNX(img, model)
  model = onnxruntime.InferenceSession("/content/drive/MyDrive/cpo/Alessandro/ai_models/Latest/ResNet_od_v0.0.2.onnx")
  boxes, confidence_boxes = detect_entries_ONNX(img, model)
  return boxes, confidence_boxes

def pdf_extract_gr(extractimg):
  # extractimg = convert_to_image(document)
  extractimg = np.array(extractimg)
  model = onnxruntime.InferenceSession("./models/CNN_deskew_v0.0.2.onnx")
  deskewed_image, angle, skew_confidence = deskew(extractimg, model)
  cleanimg = prepare_image_to_autoencoder(deskewed_image)
  model = onnxruntime.InferenceSession("./models/autoencoder_denoise_v0.0.2.onnx")
  img = autoencode_ONNX(cleanimg, model)
  # model = onnxruntime.InferenceSession("./models/ResNet_od_v0.0.2.onnx")
  # boxes, confidence_boxes = detect_entries_ONNX(img, model)
  # confidence_entries, lastname, firstname, death_date = extract_detected_entries_pdl(img, boxes)

  df = extract_detected_entries_pdl(img)
  
  firstnamerow = df.iloc[0]
  firstname = firstnamerow[0]
  firstnameconfidence = round(float(firstnamerow[1]) * 100,3)
  firstnameconfidence = f"{firstnameconfidence}%"

  surnamerow = df.iloc[1]
  surname = surnamerow[0]
  surnameconfidence = round(float(surnamerow[1]) * 100,3)
  surnameconfidence = f"{surnameconfidence}%"

  dodrow = df.iloc[2]
  dodname = dodrow[0]
  dodconfidence = round(float(dodrow[1]) * 100,3)
  dodconfidence = f"{dodconfidence}%"

  return df, deskewed_image, angle, skew_confidence, img, firstname, firstnameconfidence, surname, surnameconfidence, dodname, dodconfidence

css = """
.run_container {
  display: flex;
  flex-direction: column;
  align-items: center;
  gap: 10px;
}

.run_btn {
  margin: auto;
  width: 50%;
  display: flex;
}
.upload_cell {
  margin: auto;
  display: flex;
}

.results_container {
  display: flex;
  justify-content: space-evenly;
}

.results_cell {

}

"""

import gradio as gr

with gr.Blocks(css = css) as demo:
  gr.Markdown("""
      # Death Certificate Extraction
      """, elem_classes = "h1")
  gr.Markdown("Upload a PDF, extract data")
  with gr.Box(elem_classes = "run_container"):
    # ExtractInput = gr.File(label = "Death Certificate", elem_classes="upload_cell")
    ExtractButton = gr.Button(label = "Extract", elem_classes="run_btn")
  with gr.Row(elem_id = "hide"):
    with gr.Column():
      ExtractInput = gr.Image()
    with gr.Column():
      # ExtractResult = gr.Image(label = "result")
      with gr.Row(elem_classes = "results_container"):
        FirstNameBox = gr.Textbox(label = "First Name", elem_classes = "results_cell")
        FirstNameConfidenceBox = gr.Textbox(label = "First Name Confidence", elem_classes = "results_cell")
      with gr.Row(elem_classes = "results_container"):
        SurnameNameBox = gr.Textbox(label = "Surname", elem_classes = "results_cell")
        SurnameNameConfidenceBox = gr.Textbox(label = "Surname Confidence", elem_classes = "results_cell")
      with gr.Row(elem_classes = "results_container"):
        DODBox = gr.Textbox(label = "Date of Death", elem_classes = "results_cell")
        DODConfidenceBox = gr.Textbox(label = "Date of Death Confidence", elem_classes = "results_cell")

      with gr.Accordion("Full Results", open = False):
        ExtractDF = gr.Dataframe(label = "Results")

      with gr.Accordion("Clean Image", open = False):
        CleanOutput = gr.Image()

      with gr.Accordion("Deskew", open = False):
        DeskewOutput = gr.Image()
        with gr.Column():
          DeskewAngle = gr.Number(label = "Angle")
        with gr.Column():
          DeskewConfidence = gr.Number(label = "Confidence")

  ExtractButton.click(fn=pdf_extract_gr, 
                      inputs = ExtractInput, 
                      outputs = [ExtractDF, DeskewOutput, DeskewAngle, 
                                 DeskewConfidence, CleanOutput, FirstNameBox, 
                                 FirstNameConfidenceBox, SurnameNameBox, 
                                 SurnameNameConfidenceBox, DODBox, DODConfidenceBox])

demo.launch(show_api=True, share=False, debug=True)