Spaces:
Sleeping
Sleeping
File size: 13,401 Bytes
1d47317 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 |
# from alessandro
import re
import cv2
import numpy as np
from paddleocr import PaddleOCR
from PIL import Image
import matplotlib.pyplot as plt
import pandas as pd
import matplotlib.pyplot as plt
ocr = PaddleOCR(lang='sl')
# def convert_to_image(document):
# '''
# Function: converts the pdf to image
# Input: pdf document
# Output: image
# '''
# # reads PDFs
# # reads only first page of PDF documents
# # os.path.join(document.name, 'sample.pdf')
# pdf_document = load_from_file(document)
# page_1 = pdf_document.create_page(0)
# images = renderer.render_page(page_1)
# image_data = image.data
# # convert the image to numpy array
# image = np.array(images)
# # handles non-PDF formats (e.g., .tif)
# # else:
# # images = Image.open(document)
# # # convert the image to RGB
# # image = images.convert('RGB')
# # # convert the image to numpy array
# # image = np.array(image)
# # # TODO: change to dynamic scaling
# # # downscale the image
# # scale = 1.494
# # width = int(image.shape[1] / scale)
# # height = int(image.shape[0] / scale)
# # dim = (width, height)
# # image = cv2.resize(image, dim, interpolation = cv2.INTER_AREA)
# # fig, ax = plt.subplots(figsize=(15, 10))
# # ax.imshow(image, cmap = 'gray')
# return image
def deskew(image, model):
'''
Function: deskew an image
Input: takes an image as an array
Output: deskewed image
'''
# map the model classes to the actual degree of skew
map = { 0: '-1', 1: '-10', 2: '-11', 3: '-12', 4: '-13',
5: '-14',6: '-15', 7: '-2', 8: '-3', 9: '-4',
10: '-5',11: '-6',12: '-7', 13: '-8', 14: '-9',
15: '0', 16: '1', 17: '10', 18: '11', 19: '12',
20: '13',21: '14',22: '15', 23: '180',24: '2',
25: '270',26: '3',27: '4', 28: '5', 29: '6',
30: '7', 31: '8',32: '9', 33: '90'}
image_d = cv2.cvtColor(image, cv2.COLOR_BGR2GRAY)
width = int(image_d.shape[1] * 0.2)
height = int(image_d.shape[0] * 0.2)
dim = (width, height)
# resize image
res = cv2.resize(image_d, dim, interpolation = cv2.INTER_AREA)
resized = cv2.resize(res, (200, 200))
# add two dimensions to feed to the model
resized = resized.astype('float32').reshape(1, 200, 200 ,1)
# normalize
resized = resized/255
# predictions
predictions = model.run(None, {'conv2d_input': resized})
# best prediction
pred = predictions[0].argmax()
# angle of skew
angle = int(map[pred])
skew_confidence = predictions[0][0][pred] * 100
# deskew original image
if angle == 90:
deskewed_image = cv2.rotate(image, cv2.ROTATE_90_COUNTERCLOCKWISE)
return deskewed_image, angle, skew_confidence
if angle == 270:
deskewed_image = cv2.rotate(image, cv2.ROTATE_90_CLOCKWISE)
return deskewed_image, angle, skew_confidence
(h, w) = image.shape[:2]
center = (w // 2, h // 2)
M = cv2.getRotationMatrix2D(center, -angle, 1.0)
deskewed_image = cv2.warpAffine(image, M, (w, h), flags=cv2.INTER_CUBIC,
borderMode=cv2.BORDER_REPLICATE)
return deskewed_image, angle, skew_confidence
def prepare_image_to_autoencoder(image):
'''
Function: prepare the image to be passed to the autoencoder.
Input: image (_type_): deskewed image
Output: resized image to be passed to the autoencoder
'''
height, width = image.shape[:2]
target_height = 600
target_width = 600
image = image[int(height/3.6): int(height/1.87), int(width/3.67): int(width/1.575)]
# reshape image to fixed size
image = cv2.resize(image, (target_width, target_height))
image = cv2.cvtColor(image, cv2.COLOR_BGR2GRAY)
# normalize images
image = image / 255.0
# reshape to pass image to autoencoder
image = image.reshape(target_height, target_width, 1)
return image
def autoencode_ONNX(image, model):
'''
Function: remove noise from image
Input: image and autoencoder model
Output: image
'''
image = image.astype(np.float32).reshape(1, 600, 600, 1)
image = model.run(None, {'input_2': image})
image = image[0]
image = image.squeeze()
image = image * 255
image = image.astype('uint8')
# fig, ax = plt.subplots(figsize=(8, 5))
# ax.imshow(image, cmap = 'gray')
return image
def detect_entries_ONNX(denoised, model):
'''
Function: detect boxes Priimek, Ime and Datum boxes
Priimek: lastname
Ime: firstname
Datum smrti: date of death
Input: image
Output: boxes and confidence scores
'''
# the object detection model requires a tensor(1, h, w, 3)
autoencoded_RGB = cv2.cvtColor(denoised, cv2.COLOR_GRAY2RGB)
# adds the 1 to the tensor
autoencoded_expanded = np.expand_dims(autoencoded_RGB, axis=0)
detections = model.run(None, {'input_tensor': autoencoded_expanded})
boxes = detections[1]
confidence = detections[4] # returns a ndarray in a list of list
boxes = np.array(boxes[0])
confidence = np.array(confidence).reshape(5, 1)
boxes_and_confidence = np.append(boxes, confidence, axis=1)
# reshapes the boxes to be sorted
boxes_and_confidence = boxes_and_confidence.reshape(5, 5)
# sorts
boxes_and_confidence = \
boxes_and_confidence[boxes_and_confidence[:, 0].argsort()]
# boxes (expressed in image %)
boxes = boxes_and_confidence[:, :-1]
# boxes (expressed in actual pixels: ymin, xmin, ymax, xmax)
boxes = boxes * 600
# confidence boxes
confidence_boxes = boxes_and_confidence[:, -1].tolist()
for box in boxes:
ymin, xmin, ymax, xmax = box.astype(int)
cv2.rectangle(autoencoded_RGB, (xmin, ymin), (xmax, ymax), (0, 255, 0), 2)
plt.figure()
plt.imshow(cv2.cvtColor(autoencoded_RGB, cv2.COLOR_BGR2RGB))
plt.title("Detected Boxes")
plt.savefig("test.jpg")
img = cv2.imread("test.jpg")
return Image.fromarray(img), confidence_boxes
def extract_detected_entries_pdl(image):
result = ocr.ocr(image, cls=False)
# boxes = [line[0] for line in result]
# txts = [line[1][0] for line in result]
# scores = [line[1][1] for line in result]
# im_show = draw_ocr(image, boxes, txts, scores, font_path ='/usr/share/fonts/truetype/liberation/LiberationMono-Regular.ttf')
txt = []
scores = []
boxes = []
for r in result[0]:
txt.append(cleanString_basic(r[-1][0]))
scores.append(r[-1][1])
boxes.append(r[0])
return pd.DataFrame(np.transpose([txt,scores, boxes]),columns = ["Text","Score", "Boundary Box"])
def cleanString_basic(word):
word = word.replace("$", "s")
return word
def clean_string_start(string: 'str'):
names_flags = "√"
chars_to_remove = ['!', "'", '[', ']', '*', '|', '.', ':', '\\', '/']
if string.startswith(tuple(chars_to_remove)):
names_flags = string[0]
string = string[1:]
return string, names_flags
def clean_string_end(string: 'str'):
names_flags = "√"
chars_to_remove = ['!', "'", '[', ']', '*', '|', '.', ':', '\\', '/']
if string.endswith(tuple(chars_to_remove)):
names_flags = string[-1]
string = string[:-1]
return string, names_flags
def clean_dates(date: 'str'):
'''
Function: cleans the fields "datum smrti" and returns the char removed.
Input: date (string format)
Output: cleaned frame
'''
date_flags = "Y"
# finds special characters in the string
special_char = re.findall(r'[a-zA-Z!\[\|]', date)
if len(special_char) > 0:
date_flags = special_char
# remove special characters in the string
string = re.sub(r'[a-zA-Z!\[\|]', '', date)
return string, date_flags
def regex_string(string):
'''
Function: swaps the carachters with the "hat" with the regular ones
Input: string
Output: cleaned string
'''
map = {'Č': 'C',
'č': 'c',
'Š': 'S',
'š': 's',
'Ž': 'Z',
'ž':'z'}
for x in string:
if x in map:
string = string.replace(x, map[x])
return string
import onnxruntime
def pdf_deskew_gr (document):
img = convert_to_image(document)
model = onnxruntime.InferenceSession("./models/CNN_deskew_v0.0.2.onnx")
deskewed_image, angle, skew_confidence = deskew(img, model)
return deskewed_image, angle, skew_confidence
def pdf_clean_gr(document):
img = convert_to_image(document)
model = onnxruntime.InferenceSession("./models/CNN_deskew_v0.0.2.onnx")
deskewed_image, angle, skew_confidence = deskew(img, model)
img = prepare_image_to_autoencoder(img)
model = onnxruntime.InferenceSession("./models/autoencoder_denoise_v0.0.2.onnx")
img = autoencode_ONNX(img, model)
return img
def pdf_resnet_gr(document):
img = convert_to_image(document)
model = onnxruntime.InferenceSession("/content/drive/MyDrive/cpo/Alessandro/ai_models/Latest/CNN_deskew_v0.0.2.onnx")
deskewed_image, angle, skew_confidence = deskew(img, model)
img = prepare_image_to_autoencoder(img)
model = onnxruntime.InferenceSession("/content/drive/MyDrive/cpo/Alessandro/ai_models/Latest/autoencoder_denoise_v0.0.2.onnx")
img = autoencode_ONNX(img, model)
model = onnxruntime.InferenceSession("/content/drive/MyDrive/cpo/Alessandro/ai_models/Latest/ResNet_od_v0.0.2.onnx")
boxes, confidence_boxes = detect_entries_ONNX(img, model)
return boxes, confidence_boxes
def pdf_extract_gr(extractimg):
# extractimg = convert_to_image(document)
extractimg = np.array(extractimg)
model = onnxruntime.InferenceSession("./models/CNN_deskew_v0.0.2.onnx")
deskewed_image, angle, skew_confidence = deskew(extractimg, model)
cleanimg = prepare_image_to_autoencoder(deskewed_image)
model = onnxruntime.InferenceSession("./models/autoencoder_denoise_v0.0.2.onnx")
img = autoencode_ONNX(cleanimg, model)
# model = onnxruntime.InferenceSession("./models/ResNet_od_v0.0.2.onnx")
# boxes, confidence_boxes = detect_entries_ONNX(img, model)
# confidence_entries, lastname, firstname, death_date = extract_detected_entries_pdl(img, boxes)
df = extract_detected_entries_pdl(img)
firstnamerow = df.iloc[0]
firstname = firstnamerow[0]
firstnameconfidence = round(float(firstnamerow[1]) * 100,3)
firstnameconfidence = f"{firstnameconfidence}%"
surnamerow = df.iloc[1]
surname = surnamerow[0]
surnameconfidence = round(float(surnamerow[1]) * 100,3)
surnameconfidence = f"{surnameconfidence}%"
dodrow = df.iloc[2]
dodname = dodrow[0]
dodconfidence = round(float(dodrow[1]) * 100,3)
dodconfidence = f"{dodconfidence}%"
return df, deskewed_image, angle, skew_confidence, img, firstname, firstnameconfidence, surname, surnameconfidence, dodname, dodconfidence
css = """
.run_container {
display: flex;
flex-direction: column;
align-items: center;
gap: 10px;
}
.run_btn {
margin: auto;
width: 50%;
display: flex;
}
.upload_cell {
margin: auto;
display: flex;
}
.results_container {
display: flex;
justify-content: space-evenly;
}
.results_cell {
}
"""
import gradio as gr
with gr.Blocks(css = css) as demo:
gr.Markdown("""
# Death Certificate Extraction
""", elem_classes = "h1")
gr.Markdown("Upload a PDF, extract data")
with gr.Box(elem_classes = "run_container"):
# ExtractInput = gr.File(label = "Death Certificate", elem_classes="upload_cell")
ExtractButton = gr.Button(label = "Extract", elem_classes="run_btn")
with gr.Row(elem_id = "hide"):
with gr.Column():
ExtractInput = gr.Image()
with gr.Column():
# ExtractResult = gr.Image(label = "result")
with gr.Row(elem_classes = "results_container"):
FirstNameBox = gr.Textbox(label = "First Name", elem_classes = "results_cell")
FirstNameConfidenceBox = gr.Textbox(label = "First Name Confidence", elem_classes = "results_cell")
with gr.Row(elem_classes = "results_container"):
SurnameNameBox = gr.Textbox(label = "Surname", elem_classes = "results_cell")
SurnameNameConfidenceBox = gr.Textbox(label = "Surname Confidence", elem_classes = "results_cell")
with gr.Row(elem_classes = "results_container"):
DODBox = gr.Textbox(label = "Date of Death", elem_classes = "results_cell")
DODConfidenceBox = gr.Textbox(label = "Date of Death Confidence", elem_classes = "results_cell")
with gr.Accordion("Full Results", open = False):
ExtractDF = gr.Dataframe(label = "Results")
with gr.Accordion("Clean Image", open = False):
CleanOutput = gr.Image()
with gr.Accordion("Deskew", open = False):
DeskewOutput = gr.Image()
with gr.Column():
DeskewAngle = gr.Number(label = "Angle")
with gr.Column():
DeskewConfidence = gr.Number(label = "Confidence")
ExtractButton.click(fn=pdf_extract_gr,
inputs = ExtractInput,
outputs = [ExtractDF, DeskewOutput, DeskewAngle,
DeskewConfidence, CleanOutput, FirstNameBox,
FirstNameConfidenceBox, SurnameNameBox,
SurnameNameConfidenceBox, DODBox, DODConfidenceBox])
demo.launch(show_api=True, share=False, debug=True) |