Spaces:
Runtime error
Runtime error
import gradio as gr | |
import torch | |
from torch import autocast | |
from kandinsky2 import get_kandinsky2 | |
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu') | |
model = get_kandinsky2(device, task_type='text2img') | |
def infer(prompt): | |
images = model.generate_text2img(prompt, batch_size=4, h=512, w=512, num_steps=75, denoised_type='dynamic_threshold', dynamic_threshold_v=99.5, sampler='ddim_sampler', ddim_eta=0.05, guidance_scale=10) | |
return images | |
css = """ | |
.gradio-container { | |
font-family: 'IBM Plex Sans', sans-serif; | |
} | |
.gr-button { | |
color: white; | |
border-color: black; | |
background: black; | |
} | |
input[type='range'] { | |
accent-color: black; | |
} | |
.dark input[type='range'] { | |
accent-color: #dfdfdf; | |
} | |
.container { | |
max-width: 730px; | |
margin: auto; | |
padding-top: 1.5rem; | |
} | |
#gallery { | |
min-height: 22rem; | |
margin-bottom: 15px; | |
margin-left: auto; | |
margin-right: auto; | |
border-bottom-right-radius: .5rem !important; | |
border-bottom-left-radius: .5rem !important; | |
} | |
#gallery>div>.h-full { | |
min-height: 20rem; | |
} | |
.details:hover { | |
text-decoration: underline; | |
} | |
.gr-button { | |
white-space: nowrap; | |
} | |
.gr-button:focus { | |
border-color: rgb(147 197 253 / var(--tw-border-opacity)); | |
outline: none; | |
box-shadow: var(--tw-ring-offset-shadow), var(--tw-ring-shadow), var(--tw-shadow, 0 0 #0000); | |
--tw-border-opacity: 1; | |
--tw-ring-offset-shadow: var(--tw-ring-inset) 0 0 0 var(--tw-ring-offset-width) var(--tw-ring-offset-color); | |
--tw-ring-shadow: var(--tw-ring-inset) 0 0 0 calc(3px var(--tw-ring-offset-width)) var(--tw-ring-color); | |
--tw-ring-color: rgb(191 219 254 / var(--tw-ring-opacity)); | |
--tw-ring-opacity: .5; | |
} | |
#advanced-btn { | |
font-size: .7rem !important; | |
line-height: 19px; | |
margin-top: 12px; | |
margin-bottom: 12px; | |
padding: 2px 8px; | |
border-radius: 14px !important; | |
} | |
#advanced-options { | |
display: none; | |
margin-bottom: 20px; | |
} | |
.footer { | |
margin-bottom: 45px; | |
margin-top: 35px; | |
text-align: center; | |
border-bottom: 1px solid #e5e5e5; | |
} | |
.footer>p { | |
font-size: .8rem; | |
display: inline-block; | |
padding: 0 10px; | |
transform: translateY(10px); | |
background: white; | |
} | |
.dark .footer { | |
border-color: #303030; | |
} | |
.dark .footer>p { | |
background: #0b0f19; | |
} | |
.acknowledgments h4{ | |
margin: 1.25em 0 .25em 0; | |
font-weight: bold; | |
font-size: 115%; | |
} | |
#container-advanced-btns{ | |
display: flex; | |
flex-wrap: wrap; | |
justify-content: space-between; | |
align-items: center; | |
} | |
.animate-spin { | |
animation: spin 1s linear infinite; | |
} | |
@keyframes spin { | |
from { | |
transform: rotate(0deg); | |
} | |
to { | |
transform: rotate(360deg); | |
} | |
} | |
#share-btn-container { | |
display: flex; padding-left: 0.5rem !important; padding-right: 0.5rem !important; background-color: #000000; justify-content: center; align-items: center; border-radius: 9999px !important; width: 13rem; | |
} | |
#share-btn { | |
all: initial; color: #ffffff;font-weight: 600; cursor:pointer; font-family: 'IBM Plex Sans', sans-serif; margin-left: 0.5rem !important; padding-top: 0.25rem !important; padding-bottom: 0.25rem !important; | |
} | |
#share-btn * { | |
all: unset; | |
} | |
.gr-form{ | |
flex: 1 1 50%; border-top-right-radius: 0; border-bottom-right-radius: 0; | |
} | |
#prompt-container{ | |
gap: 0; | |
} | |
#generated_id{ | |
min-height: 700px | |
} | |
""" | |
block = gr.Blocks(css=css) | |
examples = [ | |
[ | |
'Красная площадь' | |
], | |
[ | |
'Thinking man in anime style' | |
], | |
[ | |
'אבוקדו' | |
], | |
] | |
wwith block as demo: | |
gr.Markdown(""" | |
[![Framework: PyTorch](https://img.shields.io/badge/Framework-PyTorch-orange.svg)](https://pytorch.org/) [![Huggingface space](https://img.shields.io/badge/🤗-Huggingface-yello.svg)](https://huggingface.co/sberbank-ai/Kandinsky_2.0) | |
`pip install "git+https://github.com/ai-forever/Kandinsky-2.0.git"` | |
## Model architecture: | |
It is a latent diffusion model with two multilingual text encoders: | |
* mCLIP-XLMR 560M parameters | |
* mT5-encoder-small 146M parameters | |
These encoders and multilingual training datasets unveil the real multilingual text-to-image generation experience! | |
**Kandinsky 2.0** was trained on a large 1B multilingual set, including samples that we used to train Kandinsky. | |
In terms of diffusion architecture Kandinsky 2.0 implements UNet with 1.2B parameters. | |
**Kandinsky 2.0** architecture overview: | |
![](NatallE.png) | |
""" | |
) | |
with gr.Group(): | |
with gr.Box(): | |
with gr.Row().style(mobile_collapse=False, equal_height=True): | |
text = gr.Textbox( | |
label="Enter your prompt", show_label=False, max_lines=1 | |
).style( | |
border=(True, False, True, True), | |
rounded=(True, False, False, True), | |
container=False, | |
) | |
btn = gr.Button("Run").style( | |
margin=False, | |
rounded=(False, True, True, False), | |
) | |
gallery = gr.Gallery(label="Generated images", show_label=False, elem_id="generated_id").style( | |
grid=[2], height="auto" | |
) | |
ex = gr.Examples(examples=examples, fn=infer, inputs=[text], outputs=gallery, cache_examples=True) | |
ex.dataset.headers = [""] | |
text.submit(infer, inputs=[text], outputs=gallery) | |
btn.click(infer, inputs=[text], outputs=gallery) | |
demo.queue(max_size=25).launch() | |