Spaces:
Sleeping
Sleeping
File size: 2,166 Bytes
6acd032 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 |
## Integrate our code OpenAI API
import os
from constants import openai_key
from langchain import PromptTemplate
from langchain.chains import LLMChain
from langchain.memory import ConversationBufferMemory
from langchain.chains import SequentialChain
import streamlit as st
from langchain_groq import ChatGroq
import os
os.environ["GROQ_API_KEY"] = openai_key
#model = ChatGroq(model="llama3-8b-8192")
llm = ChatGroq(model="llama3-8b-8192", temperature=0.8)
# streamlit framework
st.title('Celebrity Search Results')
input_text=st.text_input("Search the topic u want")
# Prompt Templates
first_input_prompt=PromptTemplate(
input_variables=['name'],
template="Tell me about celebrity {name}"
)
# Memory
person_memory = ConversationBufferMemory(input_key='name', memory_key='chat_history')
dob_memory = ConversationBufferMemory(input_key='person', memory_key='chat_history')
descr_memory = ConversationBufferMemory(input_key='dob', memory_key='description_history')
## OPENAI LLMS
#llm=ChatGroq(temperature=0.8)
chain=LLMChain(
llm=llm,prompt=first_input_prompt,verbose=True,output_key='person',memory=person_memory)
# Prompt Templates
second_input_prompt=PromptTemplate(
input_variables=['person'],
template="when was {person} born"
)
chain2=LLMChain(
llm=llm,prompt=second_input_prompt,verbose=True,output_key='dob',memory=dob_memory)
# Prompt Templates
third_input_prompt=PromptTemplate(
input_variables=['dob'],
template="Mention 5 major events happened around {dob} in the world"
)
chain3=LLMChain(llm=llm,prompt=third_input_prompt,verbose=True,output_key='description',memory=descr_memory)
parent_chain=SequentialChain(
chains=[chain,chain2,chain3],input_variables=['name'],output_variables=['person','dob','description'],verbose=True)
if input_text:
st.write(parent_chain({'name':input_text}))
with st.expander('Date Of Birth'):
st.info(dob_memory.buffer)
with st.expander('Person Name'):
st.info(person_memory.buffer)
with st.expander('Major Events'):
st.info(descr_memory.buffer)
|