Spaces:
Sleeping
Sleeping
import pandas as pd | |
from transformers import AutoTokenizer, AutoModel | |
from sentence_transformers import SentenceTransformer, util | |
import numpy as np | |
import torch | |
import gradio as gr | |
import spaces | |
# Categories | |
categories = [ | |
{ | |
"topic": "Confidentiality and Privacy Protection", | |
"description": "This topic covers the protection of confidentiality, privacy, and integrity in security systems. It also includes authentication and authorization processes.", | |
"experts": ["Mireille"] | |
}, | |
{ | |
"topic": "Distributed Trust and End-User Trust Models", | |
"description": "This topic focuses on distributed trust models and how end-users establish trust in secure systems.", | |
"experts": ["Mireille", "Khawla"] | |
}, | |
{ | |
"topic": "Secure Element and Key Provisioning", | |
"description": "This topic involves the secure element in systems and the process of key provisioning.", | |
"experts": ["Mireille"] | |
}, | |
{ | |
"topic": "Residential Gateway Security", | |
"description": "This topic covers the security aspects of Residential Gateways.", | |
"experts": ["Mireille"] | |
}, | |
{ | |
"topic": "Standalone Non-Public Network (SNPN) Inter-Connection and Cybersecurity", | |
"description": "This topic focuses on the inter-connection of Standalone Non-Public Networks and related cyber-security topics.", | |
"experts": ["Khawla"] | |
}, | |
{ | |
"topic": "Distributed Ledger and Blockchain in SNPN", | |
"description": "This topic covers the use of distributed ledger technology and blockchain in securing Standalone Non-Public Networks.", | |
"experts": ["Khawla"] | |
}, | |
{ | |
"topic": "Distributed Networks and Communication", | |
"description": "This topic involves distributed networks such as mesh networks, ad-hoc networks, and multi-hop networks, and their cyber-security aspects.", | |
"experts": ["Guillaume"] | |
}, | |
{ | |
"topic": "Swarm of Drones and Unmanned Aerial Vehicles Network Infrastructure", | |
"description": "This topic covers the network infrastructure deployed by Swarm of Drones and Unmanned Aerial Vehicles.", | |
"experts": ["Guillaume"] | |
}, | |
{ | |
"topic": "USIM and Over-the-Air Services", | |
"description": "This topic involves USIM and related over-the-air services such as Steering of Roaming, roaming services, network selection, and UE configuration.", | |
"experts": ["Vincent"] | |
}, | |
{ | |
"topic": "Eco-Design and Societal Impact of Technology", | |
"description": "This topic covers eco-design concepts, including energy saving, energy efficiency, carbon emissions, and the societal impact of technology.", | |
"experts": ["Pierre"] | |
}, | |
{ | |
"topic": "Service Requirements of New Services", | |
"description": "This topic involves defining service requirements for new services, detecting low signals of new trends and technologies, and assessing their impact on USIM services or over-the-air services.", | |
"experts": ["Ly-Thanh"] | |
}, | |
{ | |
"topic": "Satellite and Non Terrestrial Networks", | |
"description": "This topic covers satellite networks, Non Terrestrial Networks, Private Networks, IoT, Inter Satellite communication, and Radio Access Network.", | |
"experts": ["Nicolas"] | |
}, | |
{ | |
"topic": "Public Safety and Emergency Communication", | |
"description": "This topic involves Public Safety Communication, Military Communication, Emergency Calls, Emergency Services, Disaster Communication Access, and other related areas.", | |
"experts": ["Dorin"] | |
}, | |
{ | |
"topic": "Identifying the Human User of a Subscription", | |
"description": "This topic involves methods and processes for identifying the human user associated with a subscription.", | |
"experts": ["Kumar"] # Les experts pour cette catégorie ne sont pas spécifiés | |
}, | |
{ | |
"topic": "Authentication and Authorization of Users and Restrictions on Users", | |
"description": "This topic covers authentication and authorization processes, as well as restrictions imposed on users.", | |
"experts": ["Kumar"] # Les experts pour cette catégorie ne sont pas spécifiés | |
}, | |
{ | |
"topic": "Exposure of User Identity Profile Information", | |
"description": "This topic involves the exposure of user identity profile information and its security implications.", | |
"experts": ["Kumar"] # Les experts pour cette catégorie ne sont pas spécifiés | |
}, | |
{ | |
"topic": "Identifying non-3GPP Devices Connecting behind a UE or 5G-RG", | |
"description": "This topic involves identifying non-3GPP devices connecting behind a UE (User Equipment) or 5G-RG (5G Residential Gateway).", | |
"experts": ["Kumar"] # Les experts pour cette catégorie ne sont pas spécifiés | |
} | |
] | |
def add_categories(df,df_all): | |
categories = df.to_dict("records") | |
categories_all = df_all.to_dict("list") | |
for cat in categories: | |
if cat['topic'] not in categories_all['topic']: | |
categories_all['topic'].append(cat['topic']) | |
categories_all['description'].append(cat['description']) | |
categories_all['experts'].append(cat['experts']) | |
print(f"AFTER ADDINGS Those are the categories_all : {categories_all}") | |
return gr.update(choices=categories_all['topic']),pd.DataFrame.from_dict(categories_all) | |
df_cate = pd.DataFrame(categories) | |
df_cat_filter = df_cate.to_dict("list")["topic"] | |
def filter_by_topics(filters, categories): | |
value_filtered = [] | |
categories = categories.to_dict("records") | |
for cat in categories: | |
if cat['topic'] in filters: | |
value_filtered.append(cat) | |
return gr.DataFrame(label='categories', value=pd.DataFrame(value_filtered), interactive=True) | |
### End | |
def reset_cate(df_categories): | |
if df_categories.equals(df_cate): | |
df_categories = pd.DataFrame([['', '', '']], columns=['topic', 'description', 'expert']) | |
else: | |
df_categories = df_cate.copy() | |
return df_categories | |
def load_data(file_obj): | |
# Assuming file_obj is a file-like object uploaded via Gradio, use `pd.read_excel` directly on it | |
return pd.read_excel(file_obj) | |
def initialize_models(): | |
model_ST = SentenceTransformer("all-mpnet-base-v2",device = "cuda") | |
return model_ST | |
def generate_embeddings(df, model, Column): | |
embeddings_list = [] | |
for index, row in df.iterrows(): | |
if type(row[Column]) == str: | |
print(index) | |
if 'Title' in df.columns: | |
if type(row["Title"]) == str: | |
content = row["Title"] + "\n" + row[Column] | |
else: | |
content = row[Column] | |
else: | |
content = row[Column] | |
embeddings = model.encode(content, convert_to_tensor=True) | |
embeddings_list.append(embeddings) | |
else: | |
embeddings_list.append(np.nan) | |
df['Embeddings'] = embeddings_list | |
return df | |
def process_categories(categories, model): | |
# Create a new DataFrame to store category information and embeddings | |
df_cate = pd.DataFrame(categories) | |
# Generate embeddings for each category description | |
df_cate['Embeddings'] = df_cate.apply(lambda cat: model.encode(cat['description'], convert_to_tensor=True), axis=1) | |
return df_cate | |
def match_categories(df, category_df, treshold=0.45): | |
categories_list, experts_list, topic_list, scores_list = [], [], [], [] | |
for topic in category_df['topic']: | |
df[topic] = 0 | |
for index, ebd_content in enumerate(df['Embeddings']): | |
if isinstance(ebd_content, torch.Tensor): | |
cos_scores = util.cos_sim(ebd_content, torch.stack(list(category_df['Embeddings']), dim=0))[0] | |
high_score_indices = [i for i, score in enumerate(cos_scores) if score > treshold] | |
categories_list.append("@~@".join([category_df.loc[index, 'description'] for index in high_score_indices])) | |
experts_list.append([list(set(category_df.loc[index, 'experts'])) for index in high_score_indices]) | |
topic_list.append("@~@".join([category_df.loc[index, 'topic'] for index in high_score_indices])) | |
scores_list.append("@~@".join([str(float(cos_scores[index])) for index in high_score_indices])) | |
for j in high_score_indices: | |
df.loc[index, category_df.loc[j, 'topic']] = float(cos_scores[j]) | |
else: | |
categories_list.append(np.nan) | |
experts_list.append(np.nan) | |
topic_list.append(np.nan) | |
scores_list.append(np.nan) | |
df["Description"] = categories_list | |
df["Expert"] = experts_list | |
df["Topic"] = topic_list | |
df["Score"] = scores_list | |
return df | |
def save_data(df, filename): | |
df = df.drop(columns=['Embeddings']) | |
new_filename = filename.replace(".", "_classified.") | |
df.to_excel(new_filename, index=False) | |
return new_filename | |
def classification(column, file_path, categories, treshold): | |
# Load data | |
df = load_data(file_path) | |
# Initialize models | |
model_ST = initialize_models() | |
print('Generating Embeddings') | |
# Generate embeddings for df | |
df = generate_embeddings(df, model_ST, column) | |
print('Embeddings Generated') | |
category_df = process_categories(categories, model_ST) | |
# Match categories | |
df = match_categories(df, category_df, treshold=treshold) | |
# Save data | |
return save_data(df,file_path), df | |
def download_cate(cate_df): | |
cate_df.to_excel('categories.xlsx') | |
return gr.File(value='categories.xlsx', visible=True) | |