File size: 35,052 Bytes
5aadc08
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
556f26b
5aadc08
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
556f26b
5aadc08
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
556f26b
5aadc08
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
556f26b
 
5aadc08
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
# Copyright (c) Meta Platforms, Inc. and affiliates.
# All rights reserved.

# This source code is licensed under the license found in the
# LICENSE file in the root directory of this source tree.
# --------------------------------------------------------
# References:
# GLIDE: https://github.com/openai/glide-text2im
# MAE: https://github.com/facebookresearch/mae/blob/main/models_mae.py
# --------------------------------------------------------

import functools
import logging
import math
from typing import Optional, Tuple, List

# from apex.normalization import FusedRMSNorm as RMSNorm
from .components import RMSNorm
import fairscale.nn.model_parallel.initialize as fs_init
from fairscale.nn.model_parallel.layers import (
    ColumnParallelLinear, RowParallelLinear, ParallelEmbedding,
)
from flash_attn import flash_attn_varlen_func
from flash_attn.bert_padding import index_first_axis, pad_input, unpad_input  # noqa
import torch
import torch.distributed as dist
import torch.nn as nn
import torch.nn.functional as F

logger = logging.getLogger(__name__)


def modulate(x, shift, scale):
    return x * (1 + scale.unsqueeze(1)) + shift.unsqueeze(1)


#############################################################################
#             Embedding Layers for Timesteps and Class Labels               #
#############################################################################

class ParallelTimestepEmbedder(nn.Module):
    """
    Embeds scalar timesteps into vector representations.
    """
    def __init__(self, hidden_size, frequency_embedding_size=256):
        super().__init__()
        self.mlp = nn.Sequential(
            ColumnParallelLinear(
                frequency_embedding_size, hidden_size, bias=True,
                gather_output=False,
                init_method=functools.partial(nn.init.normal_, std=0.02),
            ),
            nn.SiLU(),
            RowParallelLinear(
                hidden_size, hidden_size, bias=True, input_is_parallel=True,
                init_method=functools.partial(nn.init.normal_, std=0.02),
            ),
        )
        self.frequency_embedding_size = frequency_embedding_size

    @staticmethod
    def timestep_embedding(t, dim, max_period=10000):
        """
        Create sinusoidal timestep embeddings.
        :param t: a 1-D Tensor of N indices, one per batch element.
                          These may be fractional.
        :param dim: the dimension of the output.
        :param max_period: controls the minimum frequency of the embeddings.
        :return: an (N, D) Tensor of positional embeddings.
        """
        # https://github.com/openai/glide-text2im/blob/main/glide_text2im/nn.py
        half = dim // 2
        freqs = torch.exp(
            -math.log(max_period) * torch.arange(
                start=0, end=half, dtype=torch.float32
            ) / half
        ).to(device=t.device)
        args = t[:, None].float() * freqs[None]
        embedding = torch.cat([torch.cos(args), torch.sin(args)], dim=-1)
        if dim % 2:
            embedding = torch.cat([
                embedding, torch.zeros_like(embedding[:, :1])
            ], dim=-1)
        return embedding

    def forward(self, t):
        t_freq = self.timestep_embedding(t, self.frequency_embedding_size)
        t_emb = self.mlp(t_freq.to(self.mlp[0].weight.dtype))
        return t_emb


class ParallelLabelEmbedder(nn.Module):
    r"""Embeds class labels into vector representations. Also handles label
    dropout for classifier-free guidance.
    """
    def __init__(self, num_classes, hidden_size, dropout_prob):
        super().__init__()
        use_cfg_embedding = int(dropout_prob > 0)
        self.embedding_table = ParallelEmbedding(
            num_classes + use_cfg_embedding, hidden_size,
            init_method=functools.partial(nn.init.normal_, std=0.02),
        )
        self.num_classes = num_classes
        self.dropout_prob = dropout_prob

    def token_drop(self, labels, force_drop_ids=None):
        """
        Drops labels to enable classifier-free guidance.
        """
        if force_drop_ids is None:
            drop_ids = torch.rand(
                labels.shape[0], device=labels.device
            ) < self.dropout_prob
            drop_ids = drop_ids.cuda()
            dist.broadcast(
                drop_ids,
                fs_init.get_model_parallel_src_rank(),
                fs_init.get_model_parallel_group(),
            )
            drop_ids = drop_ids.to(labels.device)
        else:
            drop_ids = force_drop_ids == 1
        labels = torch.where(drop_ids, self.num_classes, labels)
        return labels

    def forward(self, labels, train, force_drop_ids=None):
        use_dropout = self.dropout_prob > 0
        if (train and use_dropout) or (force_drop_ids is not None):
            labels = self.token_drop(labels, force_drop_ids)
        embeddings = self.embedding_table(labels)
        return embeddings


#############################################################################
#                               Core DiT Model                              #
#############################################################################


class Attention(nn.Module):
    """Multi-head attention module."""
    def __init__(self, dim: int, n_heads: int, n_kv_heads: Optional[int], qk_norm: bool, y_dim: int):
        """
        Initialize the Attention module.

        Args:
            dim (int): Number of input dimensions.
            n_heads (int): Number of heads.
            n_kv_heads (Optional[int]): Number of kv heads, if using GQA.

        """
        super().__init__()
        self.n_kv_heads = n_heads if n_kv_heads is None else n_kv_heads
        model_parallel_size = fs_init.get_model_parallel_world_size()
        self.n_local_heads = n_heads // model_parallel_size
        self.n_local_kv_heads = self.n_kv_heads // model_parallel_size
        self.n_rep = self.n_local_heads // self.n_local_kv_heads
        self.head_dim = dim // n_heads

        self.wq = ColumnParallelLinear(
            dim, n_heads * self.head_dim, bias=False, gather_output=False,
            init_method=nn.init.xavier_uniform_,
        )
        self.wk = ColumnParallelLinear(
            dim, self.n_kv_heads * self.head_dim, bias=False,
            gather_output=False, init_method=nn.init.xavier_uniform_,
        )
        self.wv = ColumnParallelLinear(
            dim, self.n_kv_heads * self.head_dim, bias=False,
            gather_output=False, init_method=nn.init.xavier_uniform_,
        )
        if y_dim > 0:
            self.wk_y = ColumnParallelLinear(
                y_dim, self.n_kv_heads * self.head_dim, bias=False,
                gather_output=False, init_method=nn.init.xavier_uniform_,
            )
            self.wv_y = ColumnParallelLinear(
                y_dim, self.n_kv_heads * self.head_dim, bias=False,
                gather_output=False, init_method=nn.init.xavier_uniform_,
            )
            self.gate = nn.Parameter(torch.zeros([self.n_local_heads]))

        self.wo = RowParallelLinear(
            n_heads * self.head_dim, dim, bias=False,
            input_is_parallel=True, init_method=nn.init.xavier_uniform_,
        )

        if qk_norm:
            self.q_norm = nn.LayerNorm(self.n_local_heads * self.head_dim)
            self.k_norm = nn.LayerNorm(self.n_local_kv_heads * self.head_dim)
            if y_dim > 0:
                self.ky_norm = nn.LayerNorm(self.n_local_kv_heads * self.head_dim)
            else:
                self.ky_norm = nn.Identity()
        else:
            self.q_norm = self.k_norm = nn.Identity()
            self.ky_norm = nn.Identity()
            
        # for proportional attention computation
        self.base_seqlen = None
        self.proportional_attn = False

    @staticmethod
    def reshape_for_broadcast(freqs_cis: torch.Tensor, x: torch.Tensor):
        """
        Reshape frequency tensor for broadcasting it with another tensor.

        This function reshapes the frequency tensor to have the same shape as
        the target tensor 'x' for the purpose of broadcasting the frequency
        tensor during element-wise operations.

        Args:
            freqs_cis (torch.Tensor): Frequency tensor to be reshaped.
            x (torch.Tensor): Target tensor for broadcasting compatibility.

        Returns:
            torch.Tensor: Reshaped frequency tensor.

        Raises:
            AssertionError: If the frequency tensor doesn't match the expected
                shape.
            AssertionError: If the target tensor 'x' doesn't have the expected
                number of dimensions.
        """
        ndim = x.ndim
        assert 0 <= 1 < ndim
        assert freqs_cis.shape == (x.shape[1], x.shape[-1])
        shape = [d if i == 1 or i == ndim - 1 else 1
                 for i, d in enumerate(x.shape)]
        return freqs_cis.view(*shape)

    @staticmethod
    def apply_rotary_emb(
        x_in: torch.Tensor,
        freqs_cis: torch.Tensor,
    ) -> torch.Tensor:
        """
        Apply rotary embeddings to input tensors using the given frequency
        tensor.

        This function applies rotary embeddings to the given query 'xq' and
        key 'xk' tensors using the provided frequency tensor 'freqs_cis'. The
        input tensors are reshaped as complex numbers, and the frequency tensor
        is reshaped for broadcasting compatibility. The resulting tensors
        contain rotary embeddings and are returned as real tensors.

        Args:
            x_in (torch.Tensor): Query or Key tensor to apply rotary embeddings.
            freqs_cis (torch.Tensor): Precomputed frequency tensor for complex
                exponentials.

        Returns:
            Tuple[torch.Tensor, torch.Tensor]: Tuple of modified query tensor
                and key tensor with rotary embeddings.
        """
        with torch.cuda.amp.autocast(enabled=False):
            x = torch.view_as_complex(x_in.float().reshape(*x_in.shape[:-1], -1, 2))
            freqs_cis = freqs_cis.unsqueeze(2)
            x_out = torch.view_as_real(x * freqs_cis).flatten(3)
            return x_out.type_as(x_in)

    # copied from huggingface modeling_llama.py
    def _upad_input(self, query_layer, key_layer, value_layer, attention_mask, query_length):

        def _get_unpad_data(attention_mask):
            seqlens_in_batch = attention_mask.sum(dim=-1, dtype=torch.int32)
            indices = torch.nonzero(attention_mask.flatten(), as_tuple=False).flatten()
            max_seqlen_in_batch = seqlens_in_batch.max().item()
            cu_seqlens = F.pad(torch.cumsum(seqlens_in_batch, dim=0, dtype=torch.int32), (1, 0))
            return (
                indices,
                cu_seqlens,
                max_seqlen_in_batch,
            )

        indices_k, cu_seqlens_k, max_seqlen_in_batch_k = _get_unpad_data(attention_mask)
        batch_size, kv_seq_len, num_key_value_heads, head_dim = key_layer.shape

        key_layer = index_first_axis(
            key_layer.reshape(batch_size * kv_seq_len, num_key_value_heads, head_dim), indices_k
        )
        value_layer = index_first_axis(
            value_layer.reshape(batch_size * kv_seq_len, num_key_value_heads, head_dim), indices_k
        )
        if query_length == kv_seq_len:
            query_layer = index_first_axis(
                query_layer.reshape(batch_size * kv_seq_len, self.n_local_heads, head_dim), indices_k
            )
            cu_seqlens_q = cu_seqlens_k
            max_seqlen_in_batch_q = max_seqlen_in_batch_k
            indices_q = indices_k
        elif query_length == 1:
            max_seqlen_in_batch_q = 1
            cu_seqlens_q = torch.arange(
                batch_size + 1, dtype=torch.int32, device=query_layer.device
            )  # There is a memcpy here, that is very bad.
            indices_q = cu_seqlens_q[:-1]
            query_layer = query_layer.squeeze(1)
        else:
            # The -q_len: slice assumes left padding.
            attention_mask = attention_mask[:, -query_length:]
            query_layer, indices_q, cu_seqlens_q, max_seqlen_in_batch_q = unpad_input(query_layer, attention_mask)

        return (
            query_layer,
            key_layer,
            value_layer,
            indices_q,
            (cu_seqlens_q, cu_seqlens_k),
            (max_seqlen_in_batch_q, max_seqlen_in_batch_k),
        )

    def forward(
        self,
        x: torch.Tensor,
        x_mask: torch.Tensor,
        freqs_cis: torch.Tensor,
        y: torch.Tensor,
        y_mask: torch.Tensor,
    ) -> torch.Tensor:
        """

        Args:
            x:
            x_mask:
            freqs_cis:
            y:
            y_mask:

        Returns:

        """
        bsz, seqlen, _ = x.shape
        xq, xk, xv = self.wq(x), self.wk(x), self.wv(x)
        dtype = xq.dtype

        xq = self.q_norm(xq)
        xk = self.k_norm(xk)

        xq = xq.view(bsz, seqlen, self.n_local_heads, self.head_dim)
        xk = xk.view(bsz, seqlen, self.n_local_kv_heads, self.head_dim)
        xv = xv.view(bsz, seqlen, self.n_local_kv_heads, self.head_dim)

        xq = Attention.apply_rotary_emb(xq, freqs_cis=freqs_cis)
        xk = Attention.apply_rotary_emb(xk, freqs_cis=freqs_cis)

        xq, xk = xq.to(dtype), xk.to(dtype)

        if dtype in [torch.float16, torch.bfloat16]:
            # begin var_len flash attn
            query_states, key_states, value_states, indices_q, cu_seq_lens, max_seq_lens = self._upad_input(
                xq, xk, xv, x_mask, seqlen
            )

            cu_seqlens_q, cu_seqlens_k = cu_seq_lens
            max_seqlen_in_batch_q, max_seqlen_in_batch_k = max_seq_lens

            if self.proportional_attn:
                softmax_scale = math.sqrt(math.log(seqlen, self.base_seqlen) / self.head_dim)
            else:
                softmax_scale = math.sqrt(1 / self.head_dim)

            attn_output_unpad = flash_attn_varlen_func(
                query_states,
                key_states,
                value_states,
                cu_seqlens_q=cu_seqlens_q,
                cu_seqlens_k=cu_seqlens_k,
                max_seqlen_q=max_seqlen_in_batch_q,
                max_seqlen_k=max_seqlen_in_batch_k,
                dropout_p=0.,
                causal=False,
                softmax_scale=softmax_scale
            )
            output = pad_input(attn_output_unpad, indices_q, bsz, seqlen)
            # end var_len_flash_attn

        else:
            output = F.scaled_dot_product_attention(
                xq.permute(0, 2, 1, 3),
                xk.permute(0, 2, 1, 3),
                xv.permute(0, 2, 1, 3),
                attn_mask=x_mask.bool().view(bsz, 1, 1, seqlen).expand(-1, self.n_local_heads, seqlen, -1),
            ).permute(0, 2, 1, 3).to(dtype)

        if hasattr(self, "wk_y"):
            # todo better flash_attn support
            yk = self.ky_norm(self.wk_y(y)).view(bsz, -1, self.n_local_kv_heads, self.head_dim)
            yv = self.wv_y(y).view(bsz, -1, self.n_local_kv_heads, self.head_dim)
            n_rep = self.n_local_heads // self.n_local_kv_heads
            if n_rep >= 1:
                yk = yk.unsqueeze(3).repeat(1, 1, 1, n_rep, 1).flatten(2, 3)
                yv = yv.unsqueeze(3).repeat(1, 1, 1, n_rep, 1).flatten(2, 3)
            output_y = F.scaled_dot_product_attention(
                xq.permute(0, 2, 1, 3),
                yk.permute(0, 2, 1, 3),
                yv.permute(0, 2, 1, 3),
                y_mask.view(bsz, 1, 1, -1).expand(bsz, self.n_local_heads, seqlen, -1)
            ).permute(0, 2, 1, 3)
            output_y = output_y * self.gate.tanh().view(1, 1, -1, 1)
            output = output + output_y

        output = output.flatten(-2)

        return self.wo(output)


class FeedForward(nn.Module):
    def __init__(
        self,
        dim: int,
        hidden_dim: int,
        multiple_of: int,
        ffn_dim_multiplier: Optional[float],
    ):
        """
        Initialize the FeedForward module.

        Args:
            dim (int): Input dimension.
            hidden_dim (int): Hidden dimension of the feedforward layer.
            multiple_of (int): Value to ensure hidden dimension is a multiple
                of this value.
            ffn_dim_multiplier (float, optional): Custom multiplier for hidden
                dimension. Defaults to None.

        Attributes:
            w1 (ColumnParallelLinear): Linear transformation for the first
                layer.
            w2 (RowParallelLinear): Linear transformation for the second layer.
            w3 (ColumnParallelLinear): Linear transformation for the third
                layer.

        """
        super().__init__()
        hidden_dim = int(2 * hidden_dim / 3)
        # custom dim factor multiplier
        if ffn_dim_multiplier is not None:
            hidden_dim = int(ffn_dim_multiplier * hidden_dim)
        hidden_dim = multiple_of * (
            (hidden_dim + multiple_of - 1) // multiple_of
        )

        self.w1 = ColumnParallelLinear(
            dim, hidden_dim, bias=False, gather_output=False,
            init_method=nn.init.xavier_uniform_,
        )
        self.w2 = RowParallelLinear(
            hidden_dim, dim, bias=False, input_is_parallel=True,
            init_method=nn.init.xavier_uniform_,
        )
        self.w3 = ColumnParallelLinear(
            dim, hidden_dim, bias=False, gather_output=False,
            init_method=nn.init.xavier_uniform_,
        )

    # @torch.compile
    def _forward_silu_gating(self, x1, x3):
        return F.silu(x1) * x3

    def forward(self, x):
        return self.w2(self._forward_silu_gating(self.w1(x), self.w3(x)))


class TransformerBlock(nn.Module):
    def __init__(self, layer_id: int, dim: int, n_heads: int, n_kv_heads: int,
                 multiple_of: int, ffn_dim_multiplier: float, norm_eps: float,
                 qk_norm: bool, y_dim: int) -> None:
        """
        Initialize a TransformerBlock.

        Args:
            layer_id (int): Identifier for the layer.
            dim (int): Embedding dimension of the input features.
            n_heads (int): Number of attention heads.
            n_kv_heads (Optional[int]): Number of attention heads in key and
                value features (if using GQA), or set to None for the same as
                query.
            multiple_of (int):
            ffn_dim_multiplier (float):
            norm_eps (float):

        Attributes:
            n_heads (int): Number of attention heads.
            dim (int): Dimension size of the model.
            head_dim (int): Dimension size of each attention head.
            attention (Attention): Attention module.
            feed_forward (FeedForward): FeedForward module.
            layer_id (int): Identifier for the layer.
            attention_norm (RMSNorm): Layer normalization for attention output.
            ffn_norm (RMSNorm): Layer normalization for feedforward output.

        """
        super().__init__()
        self.dim = dim
        self.head_dim = dim // n_heads
        self.attention = Attention(dim, n_heads, n_kv_heads, qk_norm, y_dim)
        self.feed_forward = FeedForward(
            dim=dim, hidden_dim=4 * dim, multiple_of=multiple_of,
            ffn_dim_multiplier=ffn_dim_multiplier,
        )
        self.layer_id = layer_id
        self.attention_norm = RMSNorm(dim, eps=norm_eps)
        self.attention_norm1 = RMSNorm(dim, eps=norm_eps)
        self.ffn_norm = RMSNorm(dim, eps=norm_eps)
        self.ffn_norm1 = RMSNorm(dim, eps=norm_eps)

        self.adaLN_modulation = nn.Sequential(
            nn.SiLU(),
            ColumnParallelLinear(
                min(dim, 1024), 6 * dim, bias=True, gather_output=True,
                init_method=nn.init.zeros_,
            ),
        )

        self.attention_y_norm = RMSNorm(y_dim, eps=norm_eps)

    def forward(
        self,
        x: torch.Tensor,
        x_mask: torch.Tensor,
        freqs_cis: torch.Tensor,
        y: torch.Tensor,
        y_mask: torch.Tensor,
        adaln_input: Optional[torch.Tensor] = None,
    ):
        """
        Perform a forward pass through the TransformerBlock.

        Args:
            x (torch.Tensor): Input tensor.
            freqs_cis (torch.Tensor): Precomputed cosine and sine frequencies.

        Returns:
            torch.Tensor: Output tensor after applying attention and
                feedforward layers.

        """
        if adaln_input is not None:
            shift_msa, scale_msa, gate_msa, shift_mlp, scale_mlp, gate_mlp = \
                self.adaLN_modulation(adaln_input).chunk(6, dim=1)

            x = x + self.attention_norm1(gate_msa.unsqueeze(1) * self.attention(
                modulate(self.attention_norm(x), shift_msa, scale_msa),
                x_mask,
                freqs_cis,
                self.attention_y_norm(y),
                y_mask,
            ))
            d = x.shape[-1]
            x = x + self.ffn_norm1(gate_mlp.unsqueeze(1) * self.feed_forward(
                modulate(self.ffn_norm(x), shift_mlp, scale_mlp).view(-1, d),
            ).view(*x.shape))

        else:
            x = x + self.attention_norm1(self.attention(
                self.attention_norm(x), x_mask, freqs_cis, self.attention_y_norm(y), y_mask
            ))
            # for compatibility with torch.compile because the sequence length changes
            B, L, D = x.shape
            x = x.view(B*L, D)
            x = x + self.ffn_norm1(self.feed_forward(self.ffn_norm(x)))
            x = x.view(B, L, D)

        return x


class ParallelFinalLayer(nn.Module):
    """
    The final layer of DiT.
    """
    def __init__(self, hidden_size, patch_size, out_channels):
        super().__init__()
        self.norm_final = nn.LayerNorm(
            hidden_size, elementwise_affine=False, eps=1e-6,
        )
        self.linear = ColumnParallelLinear(
            hidden_size, patch_size * patch_size * out_channels, bias=True,
            init_method=nn.init.zeros_, gather_output=True,
        )
        self.adaLN_modulation = nn.Sequential(
            nn.SiLU(),
            ColumnParallelLinear(
                min(hidden_size, 1024), 2 * hidden_size, bias=True,
                init_method=nn.init.zeros_, gather_output=True,
            ),
        )

    def forward(self, x, c):
        shift, scale = self.adaLN_modulation(c).chunk(2, dim=1)
        x = modulate(self.norm_final(x), shift, scale)
        x = self.linear(x)
        return x


class NextDiT(nn.Module):
    """
    Diffusion model with a Transformer backbone.
    """
    def __init__(
        self,
        patch_size: int = 2,
        in_channels: int = 4,
        dim: int = 4096,
        n_layers: int = 32,
        n_heads: int = 32,
        n_kv_heads: Optional[int] = None,
        multiple_of: int = 256,
        ffn_dim_multiplier: Optional[float] = None,
        norm_eps: float = 1e-5,
        learn_sigma: bool = True,
        qk_norm: bool = False,
        cap_feat_dim: int = 5120,
        rope_scaling_factor: float = 1.,
        ntk_factor: float=1.
    ) -> None:
        super().__init__()
        self.learn_sigma = learn_sigma
        self.in_channels = in_channels
        self.out_channels = in_channels * 2 if learn_sigma else in_channels
        self.patch_size = patch_size

        self.x_embedder = ColumnParallelLinear(
            in_features=patch_size * patch_size * in_channels,
            out_features=dim,
            bias=True,
            gather_output=True,
            init_method=nn.init.xavier_uniform_,
        )
        nn.init.constant_(self.x_embedder.bias, 0.)

        self.t_embedder = ParallelTimestepEmbedder(min(dim, 1024))
        self.cap_embedder = nn.Sequential(
            nn.LayerNorm(cap_feat_dim),
            ColumnParallelLinear(cap_feat_dim, min(dim, 1024), bias=True, gather_output=True,
                                 init_method=nn.init.zeros_),
        )

        self.layers = nn.ModuleList([
            TransformerBlock(layer_id, dim, n_heads, n_kv_heads, multiple_of,
                             ffn_dim_multiplier, norm_eps, qk_norm, cap_feat_dim)
            for layer_id in range(n_layers)
        ])
        self.final_layer = ParallelFinalLayer(dim, patch_size, self.out_channels)

        assert (dim // n_heads) % 4 == 0, "2d rope needs head dim to be divisible by 4"
        self.dim = dim
        self.n_heads = n_heads
        self.freqs_cis = NextDiT.precompute_freqs_cis(
            dim // n_heads, 384, rope_scaling_factor=rope_scaling_factor, ntk_factor=ntk_factor
        )
        self.rope_scaling_factor = rope_scaling_factor
        self.ntk_factor = ntk_factor
        # self.eol_token = nn.Parameter(torch.empty(dim))
        self.pad_token = nn.Parameter(torch.empty(dim))
        # nn.init.normal_(self.eol_token, std=0.02)
        nn.init.normal_(self.pad_token, std=0.02)

    def unpatchify(self, x: torch.Tensor, img_size: List[Tuple[int, int]], return_tensor=False) -> List[torch.Tensor]:
        """
        x: (N, T, patch_size**2 * C)
        imgs: (N, H, W, C)
        """
        pH = pW = self.patch_size
        if return_tensor:
            H, W = img_size[0]
            B = x.size(0)
            L = (H // pH) * (W // pW)
            x = x[:, :L].view(B, H // pH, W // pW, pH, pW, self.out_channels)
            x = x.permute(0, 5, 1, 3, 2, 4).flatten(4, 5).flatten(2, 3)
            return x
        else:
            imgs = []
            for i in range(x.size(0)):
                H, W = img_size[i]
                L = (H // pH) * (W // pW)
                imgs.append(x[i][:L].view(
                    H // pH, W // pW, pH, pW, self.out_channels
                ).permute(4, 0, 2, 1, 3).flatten(3, 4).flatten(1, 2))
        return imgs

    def patchify_and_embed(
        self,
        x: List[torch.Tensor] | torch.Tensor
    ) -> Tuple[torch.Tensor, torch.Tensor, List[Tuple[int, int]], torch.Tensor]:
        self.freqs_cis = self.freqs_cis.to(x[0].device)
        if isinstance(x, torch.Tensor):
            pH = pW = self.patch_size
            B, C, H, W = x.size()
            x = x.view(B, C, H // pH, pH, W // pW, pW).permute(0, 2, 4, 1, 3, 5).flatten(3)
            x = self.x_embedder(x)
            x = x.flatten(1, 2)

            mask = torch.ones(x.shape[0], x.shape[1], dtype=torch.int32, device=x.device)
            # leave the first line for text
            return x, mask, [(H, W)] * B, self.freqs_cis[:H//pH, :W//pW].flatten(0,1).unsqueeze(0)
        else:
            pH = pW = self.patch_size
            x_embed = []
            freqs_cis = []
            img_size = []
            l_effective_seq_len = []

            for img in x:
                C, H, W = img.size()
                item_freqs_cis = self.freqs_cis[:H//pH, :W//pW]
                freqs_cis.append(item_freqs_cis.flatten(0,1))
                img_size.append((H, W))
                img = img.view(C, H // pH, pH, W // pW, pW).permute(1, 3, 0, 2, 4).flatten(2)
                img = self.x_embedder(img)
                img = img.flatten(0, 1)
                l_effective_seq_len.append(len(img))
                x_embed.append(img)

            max_seq_len = max(l_effective_seq_len)
            mask = torch.zeros(len(x), max_seq_len, dtype=torch.int32, device=x[0].device)
            padded_x_embed = []
            padded_freqs_cis = []
            for i, (item_embed, item_freqs_cis, item_seq_len) in enumerate(zip(
                x_embed, freqs_cis, l_effective_seq_len
            )):
                item_embed = torch.cat([
                    item_embed,
                    self.pad_token.view(1, -1).expand(max_seq_len - item_seq_len, -1),
                ], dim=0)
                item_freqs_cis = torch.cat([
                    item_freqs_cis,
                    item_freqs_cis[-1:].expand(max_seq_len - item_seq_len, -1)
                ], dim=0)
                padded_x_embed.append(item_embed)
                padded_freqs_cis.append(item_freqs_cis)
                mask[i][:item_seq_len] = 1

            x_embed = torch.stack(padded_x_embed, dim=0)
            freqs_cis = torch.stack(padded_freqs_cis, dim=0)
            return x_embed, mask, img_size, freqs_cis

    def forward(self, x, t, cap_feats, cap_mask):
        """
        Forward pass of DiT.
        t: (N,) tensor of diffusion timesteps
        y: (N,) tensor of class labels
        """
        x_is_tensor = isinstance(x, torch.Tensor)
        x, mask, img_size, freqs_cis = self.patchify_and_embed(x)
        freqs_cis = freqs_cis.to(x.device)

        # cap_freqs_cis = self.freqs_cis[:1, :cap_feats.shape[1]].to(x.device)

        t = self.t_embedder(t)                   # (N, D)
        cap_mask_float = cap_mask.float().unsqueeze(-1)
        cap_feats_pool = (cap_feats * cap_mask_float).sum(dim=1) / cap_mask_float.sum(dim=1)
        cap_feats_pool = cap_feats_pool.to(cap_feats)
        cap_emb = self.cap_embedder(cap_feats_pool)
        adaln_input = t + cap_emb

        cap_mask = cap_mask.bool()
        for layer in self.layers:
            x = layer(
                x, mask, freqs_cis, cap_feats, cap_mask,
                adaln_input=adaln_input
            )

        x = self.final_layer(x, adaln_input)
        x = self.unpatchify(x, img_size, return_tensor=x_is_tensor)
        if self.learn_sigma:
            if x_is_tensor:
                x, _ = x.chunk(2, dim=1)
            else:
                x = [_.chunk(2, dim=0)[0] for _ in x]
        return x

    def forward_with_cfg(self, x, t, cap_feats, cap_mask, cfg_scale, rope_scaling_factor=None, ntk_factor=None, base_seqlen: Optional[int] = None, proportional_attn: bool = False):
        # """
        # Forward pass of DiT, but also batches the unconditional forward pass
        # for classifier-free guidance.
        # """
        # # https://github.com/openai/glide-text2im/blob/main/notebooks/text2im.ipynb
        # print(ntk_factor, rope_scaling_factor, self.ntk_factor, self.rope_scaling_factor)
        if rope_scaling_factor is not None or ntk_factor is not None:
            rope_scaling_factor = rope_scaling_factor if rope_scaling_factor is not None else self.rope_scaling_factor
            ntk_factor = ntk_factor if ntk_factor is not None else self.ntk_factor
            if rope_scaling_factor != self.rope_scaling_factor or ntk_factor != self.ntk_factor:
                print(f"override freqs_cis, rope_scaling {rope_scaling_factor}, ntk {ntk_factor}", flush=True)
                self.freqs_cis = NextDiT.precompute_freqs_cis(
                    self.dim // self.n_heads, 384,
                    rope_scaling_factor=rope_scaling_factor, ntk_factor=ntk_factor
                )
                self.rope_scaling_factor = rope_scaling_factor
                self.ntk_factor = ntk_factor
        
        if proportional_attn:
            assert base_seqlen is not None
            for layer in self.layers:
                layer.attention.base_seqlen = base_seqlen
                layer.attention.proportional_attn = proportional_attn
        else:
            for layer in self.layers:
                layer.attention.base_seqlen = None
                layer.attention.proportional_attn = proportional_attn

        half = x[: len(x) // 2]
        combined = torch.cat([half, half], dim=0)
        model_out = self.forward(combined, t, cap_feats, cap_mask)
        # For exact reproducibility reasons, we apply classifier-free guidance on only
        # three channels by default. The standard approach to cfg applies it to all channels.
        # This can be done by uncommenting the following line and commenting-out the line following that.
        # eps, rest = model_out[:, :self.in_channels], model_out[:, self.in_channels:]
        eps, rest = model_out[:, :3], model_out[:, 3:]
        cond_eps, uncond_eps = torch.split(eps, len(eps) // 2, dim=0)
        half_eps = uncond_eps + cfg_scale * (cond_eps - uncond_eps)
        eps = torch.cat([half_eps, half_eps], dim=0)
        return torch.cat([eps, rest], dim=1)

    @staticmethod
    def precompute_freqs_cis(
        dim: int,
        end: int,
        theta: float = 10000.0,
        rope_scaling_factor: float = 1.0,
        ntk_factor: float = 1.0
    ):
        """
        Precompute the frequency tensor for complex exponentials (cis) with
        given dimensions.

        This function calculates a frequency tensor with complex exponentials
        using the given dimension 'dim' and the end index 'end'. The 'theta'
        parameter scales the frequencies. The returned tensor contains complex
        values in complex64 data type.

        Args:
            dim (int): Dimension of the frequency tensor.
            end (int): End index for precomputing frequencies.
            theta (float, optional): Scaling factor for frequency computation.
                Defaults to 10000.0.

        Returns:
            torch.Tensor: Precomputed frequency tensor with complex
                exponentials.
        """

        theta = theta * ntk_factor

        logger.info(f"theta {theta} rope scaling {rope_scaling_factor} ntk {ntk_factor}")
        freqs = 1.0 / (theta ** (
            torch.arange(0, dim, 4)[: (dim // 4)].float().cuda() / dim
        ))
        t = torch.arange(end, device=freqs.device, dtype=torch.float)  # type: ignore
        t = t / rope_scaling_factor
        freqs = torch.outer(t, freqs).float()  # type: ignore
        freqs_cis = torch.polar(torch.ones_like(freqs), freqs)  # complex64

        freqs_cis_h = freqs_cis.view(end, 1, dim//4, 1).repeat(1, end, 1, 1)
        freqs_cis_w = freqs_cis.view(1, end, dim//4, 1).repeat(end, 1, 1, 1)
        freqs_cis = torch.cat([freqs_cis_h, freqs_cis_w], dim=-1).flatten(2)
        return freqs_cis

    def parameter_count(self) -> int:
        tensor_parallel_module_list = (
            ColumnParallelLinear, RowParallelLinear, ParallelEmbedding,
        )
        total_params = 0

        def _recursive_count_params(module):
            nonlocal total_params
            is_tp_module = isinstance(module, tensor_parallel_module_list)
            for param in module.parameters(recurse=False):
                total_params += param.numel() * (
                    fs_init.get_model_parallel_world_size()
                    if is_tp_module else 1
                )
            for submodule in module.children():
                _recursive_count_params(submodule)

        _recursive_count_params(self)
        return total_params

    def get_fsdp_wrap_module_list(self) -> List[nn.Module]:
        return list(self.layers)


#############################################################################
#                                 DiT Configs                               #
#############################################################################
def NextDiT_2B_patch2(**kwargs):
    return NextDiT(
        patch_size=2, dim=2304, n_layers=24, n_heads=32, **kwargs
    )