import shutil import json5 import openai import gradio as gr from tabulate import tabulate import utils import pipeline from pipeline import generate_json_file, generate_audio from voice_presets import load_voice_presets_metadata, add_session_voice_preset, \ remove_session_voice_preset from share_btn import community_icon_html, loading_icon_html, share_js VOICE_PRESETS_HEADERS = ['ID', 'Description'] DELETE_FILE_WHEN_DO_CLEAR = False DEBUG = False def convert_json_to_md(audio_script_response): audio_json_data = json5.loads(audio_script_response) table = [[node.get(field, 'N/A') for field in ["audio_type", "layout", "id", "character", "action", 'vol']] + [node.get("desc", "N/A") if node.get("audio_type") != "speech" else node.get("text", "N/A")] + [node.get("len", "Auto") if "len" in node else "Auto"] for i, node in enumerate(audio_json_data)] headers = ["Audio Type", "Layout", "ID", "Character", "Action", 'Volume', "Description", "Length" ] # Tabulate table_txt = tabulate(table, headers, tablefmt="github") return table_txt def convert_char_voice_map_to_md(char_voice_map): table =[[character, char_voice_map[character]["id"]] for character in char_voice_map] headers = ["Character", "Voice"] # Tabulate table_txt = tabulate(table, headers, tablefmt="github") return table_txt def generate_script_fn(instruction, _state: gr.State): try: session_id = _state['session_id'] json_script = generate_json_file(session_id, instruction) table_text = convert_json_to_md(json_script) except Exception as e: gr.Warning(str(e)) print(f"Generating script error: {str(e)}") return [ None, _state, gr.Button.update(interactive=False), gr.Button.update(interactive=True), gr.Button.update(interactive=False), gr.Button.update(interactive=False), ] _state = { **_state, 'session_id': session_id, 'json_script': json_script } return [ table_text, _state, gr.Button.update(interactive=True), gr.Button.update(interactive=True), gr.Button.update(interactive=True), gr.Button.update(interactive=True), ] def generate_audio_fn(state): btn_state = gr.Button.update(interactive=True) try: audio_path, char_voice_map = generate_audio(**state) table_text = convert_char_voice_map_to_md(char_voice_map) # TODO: output char_voice_map to a table return [ table_text, gr.make_waveform(str(audio_path)), btn_state, btn_state, btn_state, btn_state, ] except Exception as e: print(f"Generation audio error: {str(e)}") gr.Warning(str(e)) # For debugging, uncomment the line below #raise e return [ None, None, btn_state, btn_state, btn_state, btn_state, ] def clear_fn(state): if DELETE_FILE_WHEN_DO_CLEAR: shutil.rmtree('output', ignore_errors=True) state = {'session_id': pipeline.init_session()} return [gr.Textbox.update(value=''), gr.Video.update(value=None), gr.Markdown.update(value=''), gr.Button.update(interactive=False), gr.Button.update(interactive=False), state, gr.Dataframe.update(visible=False), gr.Button.update(visible=False), gr.Textbox.update(value=''), gr.Textbox.update(value=''), gr.File.update(value=None)] def textbox_listener(textbox_input): if len(textbox_input) > 0: return gr.Button.update(interactive=True) else: return gr.Button.update(interactive=False) def get_voice_preset_to_list(state: gr.State): if state.__class__ == dict: session_id = state['session_id'] else: session_id = state.value['session_id'] voice_presets = load_voice_presets_metadata( utils.get_session_voice_preset_path(session_id), safe_if_metadata_not_exist=True ) dataframe = [] for key in voice_presets.keys(): row = [key, voice_presets[key]['desc']] dataframe.append(row) return dataframe def df_on_select(evt: gr.SelectData): print(f"You selected {evt.value} at {evt.index} from {evt.target}") return {'selected_voice_preset': evt.index} def del_voice_preset(selected_voice_presets, ui_state, dataframe): gr_visible = gr.Dataframe.update(visible=True) btn_visible = gr.Button.update(visible=True) current_presets = get_voice_preset_to_list(ui_state) if selected_voice_presets['selected_voice_preset'] is None or \ selected_voice_presets['selected_voice_preset'][0] > len(current_presets) - 1: gr.Warning('None row is selected') return [current_presets, gr_visible, btn_visible, selected_voice_presets] # Do the real file deletion index = selected_voice_presets['selected_voice_preset'][0] vp_id = dataframe['ID'][index] remove_session_voice_preset(vp_id, ui_state['session_id']) current_presets = get_voice_preset_to_list(ui_state) gr.Dataframe.update(value=current_presets) if len(current_presets) == 0: gr_visible = gr.Dataframe.update(visible=False) btn_visible = gr.Button.update(visible=False) selected_voice_presets['selected_voice_preset'] = None return [current_presets, gr_visible, btn_visible, selected_voice_presets] def get_system_voice_presets(): system_presets = load_voice_presets_metadata(utils.get_system_voice_preset_path()) data = [] for k, v in system_presets.items(): data.append([k, v['desc']]) # headers = ['id', 'description'] # table_txt = tabulate(data, headers, tablefmt="github") return data def set_openai_key(key): openai.api_key = key return key def add_voice_preset(vp_id, vp_desc, file, ui_state, added_voice_preset): if vp_id is None or vp_desc is None or file is None or vp_id.strip() == '' or vp_desc.strip() == '': gr.Warning('please complete all three fields') else: count: int = added_voice_preset['count'] # check if greater than 3 session_id = ui_state['session_id'] file_path = file.name print(f'session {session_id}, id {id}, desc {vp_desc}, file {file_path}') # Do adding ... try: add_session_voice_preset(vp_id, vp_desc, file_path, session_id) added_voice_preset['count'] = count + 1 except Exception as exception: gr.Warning(str(exception)) # After added dataframe = get_voice_preset_to_list(ui_state) df_visible = gr.Dataframe.update(visible=True) del_visible = gr.Button.update(visible=True) if len(dataframe) == 0: df_visible = gr.Dataframe.update(visible=False) del_visible = gr.Button.update(visible=False) return [gr.Textbox.update(value=''), gr.Textbox.update(value=''), gr.File.update(value=None), ui_state, added_voice_preset, dataframe, gr.Button.update(interactive=True), df_visible, del_visible] css = """ a { color: inherit; text-decoration: underline; } .gradio-container { font-family: 'IBM Plex Sans', sans-serif; } .gr-button { color: white; border-color: #000000; background: #000000; } input[type='range'] { accent-color: #000000; } .dark input[type='range'] { accent-color: #dfdfdf; } .container { max-width: 730px; margin: auto; padding-top: 1.5rem; } #gallery { min-height: 22rem; margin-bottom: 15px; margin-left: auto; margin-right: auto; border-bottom-right-radius: .5rem !important; border-bottom-left-radius: .5rem !important; } #gallery>div>.h-full { min-height: 20rem; } .details:hover { text-decoration: underline; } .gr-button { white-space: nowrap; } .gr-button:focus { border-color: rgb(147 197 253 / var(--tw-border-opacity)); outline: none; box-shadow: var(--tw-ring-offset-shadow), var(--tw-ring-shadow), var(--tw-shadow, 0 0 #0000); --tw-border-opacity: 1; --tw-ring-offset-shadow: var(--tw-ring-inset) 0 0 0 var(--tw-ring-offset-width) var(--tw-ring-offset-color); --tw-ring-shadow: var(--tw-ring-inset) 0 0 0 calc(3px var(--tw-ring-offset-width)) var(--tw-ring-color); --tw-ring-color: rgb(191 219 254 / var(--tw-ring-opacity)); --tw-ring-opacity: .5; } #advanced-btn { font-size: .7rem !important; line-height: 19px; margin-top: 12px; margin-bottom: 12px; padding: 2px 8px; border-radius: 14px !important; } #advanced-options { margin-bottom: 20px; } .footer { margin-bottom: 45px; margin-top: 35px; text-align: center; border-bottom: 1px solid #e5e5e5; } .footer>p { font-size: .8rem; display: inline-block; padding: 0 10px; transform: translateY(10px); background: white; } .dark .footer { border-color: #303030; } .dark .footer>p { background: #0b0f19; } .acknowledgments h4{ margin: 1.25em 0 .25em 0; font-weight: bold; font-size: 115%; } #container-advanced-btns{ display: flex; flex-wrap: wrap; justify-content: space-between; align-items: center; } .animate-spin { animation: spin 1s linear infinite; } @keyframes spin { from { transform: rotate(0deg); } to { transform: rotate(360deg); } } #share-btn-container { display: flex; padding-left: 0.5rem !important; padding-right: 0.5rem !important; background-color: #000000; justify-content: center; align-items: center; border-radius: 9999px !important; width: 13rem; margin-top: 10px; margin-left: auto; } #share-btn { all: initial; color: #ffffff;font-weight: 600; cursor:pointer; font-family: 'IBM Plex Sans', sans-serif; margin-left: 0.5rem !important; padding-top: 0.25rem !important; padding-bottom: 0.25rem !important;right:0; } #share-btn * { all: unset; } #share-btn-container div:nth-child(-n+2){ width: auto !important; min-height: 0px !important; } #share-btn-container .wrap { display: none !important; } .gr-form{ flex: 1 1 50%; border-top-right-radius: 0; border-bottom-right-radius: 0; } #prompt-container{ gap: 0; } #generated_id{ min-height: 700px } #setting_id{ margin-bottom: 12px; text-align: center; font-weight: 900; } """ with gr.Blocks(css=css) as interface: gr.HTML( """
For faster inference without waiting in queue, you may duplicate the space and upgrade to GPU (VRAM>16G) in settings.