Spaces:
Running
Running
File size: 9,725 Bytes
49d6897 b66f230 49d6897 b66f230 49d6897 b66f230 49d6897 b66f230 49d6897 b66f230 49d6897 b66f230 49d6897 b66f230 49d6897 b66f230 49d6897 b66f230 49d6897 b66f230 49d6897 b66f230 49d6897 b66f230 49d6897 b66f230 49d6897 b66f230 49d6897 b66f230 49d6897 b66f230 49d6897 b66f230 49d6897 b66f230 49d6897 b66f230 49d6897 b66f230 49d6897 b66f230 49d6897 b66f230 49d6897 b66f230 49d6897 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 |
import argparse
import json
from collections import defaultdict
from typing import Sequence
import numpy as np
from numba import njit, prange
from scipy.stats import ttest_rel
from sklearn.metrics import roc_curve, auc
from tqdm import tqdm
SUPPORTED_METRICS = [
"avg_mcauroc", # for classification tasks
"exact_match", # for QA tasks
"acc", # for multichoice tasks
"rouge_raw_r2_mid_f", # for summarization tasks
"word_perplexity", # for language modeling tasks
]
def _get_CMs(i, probabilities, references, thresholds):
confusion_matrices = []
for threshold in thresholds[i]:
TP = 0
FP = 0
TN = 0
FN = 0
for j in range(len(probabilities)):
if probabilities[j][i] >= threshold:
if references[j] == i:
TP += 1
else:
FP += 1
else:
if references[j] == i:
FN += 1
else:
TN += 1
cm = {"TP": TP, "FP": FP, "TN": TN, "FN": FN, "threshold": threshold, "class": i}
confusion_matrices.append(cm)
return confusion_matrices
def compute_significance_ttest(scores_A, scores_B):
delta = np.mean(scores_A) - np.mean(scores_B)
if delta <= 0:
return 1.0, delta
t, p = ttest_rel(scores_A, scores_B)
# correct for one-tailed test
p_value = p / 2
return p_value, delta
@njit(parallel=True)
def compute_significance_bootstrap(scores_A, scores_B):
n = len(scores_A)
R = 1_000
delta_orig = np.mean(scores_A) - np.mean(scores_B)
if delta_orig <= 0:
return 1.0, delta_orig
r = 0
for _ in prange(R):
samples = np.random.choice(n, n, replace=True)
temp_A = scores_A[samples]
temp_B = scores_B[samples]
delta = np.mean(temp_A) - np.mean(temp_B)
if delta > 2 * delta_orig:
r += 1
pval = r / R
return pval, delta_orig
def compute_significance_avg_mcauroc(probsA: Sequence[Sequence[float]], referencesA: Sequence[int],
probsB: Sequence[Sequence[float]], referencesB: Sequence[int]):
# compute MC-AUC for model A
model_A_scores = get_mc_auc_samples(probsA, referencesA, Nsamples=100)
model_B_scores = get_mc_auc_samples(probsB, referencesB, Nsamples=100)
delta = np.mean(model_A_scores) - np.mean(model_B_scores)
# one-tailed test
p_value = ((model_A_scores[:, np.newaxis] <= model_B_scores[np.newaxis, :]).sum()
/ (len(model_A_scores) * len(model_B_scores)))
return p_value, delta
# Helper function to convert confusion matrices to numba-compatible arrays
def convert_confusion_matrices(confusion_matrices):
num_thresholds = len(confusion_matrices)
tp = np.empty(num_thresholds)
fn = np.empty(num_thresholds)
for k in range(num_thresholds):
tp[k] = confusion_matrices[k]["TP"]
fn[k] = confusion_matrices[k]["FN"]
return tp, fn
@njit(parallel=True)
def compute_tpr_variates(tp, fn, 位, Nsamples, num_thresholds):
tpr_variates_for_each_fpr = np.empty((num_thresholds, Nsamples))
for k in prange(num_thresholds):
tpr_variates_for_each_fpr[k, :] = np.random.beta(tp[k] + 位, fn[k] + 位, Nsamples)
return tpr_variates_for_each_fpr
def get_mc_auc_samples(probs, references, Nsamples=1_000_000):
n_classes = list(range(len(probs[0])))
fpr = dict()
thresholds = dict()
# compute AUC for every class
auc_scores_per_class = []
for i in range(len(n_classes)):
# for i-th class vs all others
fpr[i], _, thresholds[i] = roc_curve(y_true=[1 if x == n_classes[i] else 0 for x in references],
y_score=[prob[i] for prob in probs])
confusion_matrices = _get_CMs(i, probs, references, thresholds)
tp, fn = convert_confusion_matrices(confusion_matrices)
位 = 1.0 # <- Flat prior
# 位 = 0.5 # <- Jeffrey's prior
# sample variates for every threshold
# tpr_variates_for_each_fpr = []
# for k in range(len(thresholds[i])):
# tpr_variates_for_each_fpr.append(
# numpy.random.beta(confusion_matrices[k]["TP"] + 位, confusion_matrices[k]["FN"] + 位, Nsamples))
tpr_variates_for_each_fpr = compute_tpr_variates(tp, fn, 位, Nsamples, len(thresholds[i]))
# fprs x tpr_variates
# tpr_variates_for_each_fpr = np.array(tpr_variates_for_each_fpr)
# now pick 1 variate for each fpr, and compute AUC
auc_scores = []
for tpr_variates in tpr_variates_for_each_fpr.T:
auc_score = auc(fpr[i], tpr_variates)
# if numpy.isnan(auc_score):
# auc_score = 0
auc_scores.append(auc_score)
auc_scores_per_class.append(auc_scores)
auc_scores_per_class = np.array(auc_scores_per_class)
mcauc_scores = np.mean(auc_scores_per_class, axis=0)
return mcauc_scores
def read_json(file_path):
data = defaultdict(list)
with open(file_path, "r") as f:
fc = json.load(f)
for task, results in fc["predictions"].items():
# determine the metric
metric = None
for key in SUPPORTED_METRICS:
if key in results[0]:
metric = key
break
if metric is None:
raise ValueError(f"Unsupported metric in {file_path}")
if metric == "avg_mcauroc":
local_data = [line[metric] for line in fc["predictions"][task]]
unzipped_list = list(zip(*local_data))
golds = unzipped_list[0]
probs = unzipped_list[1]
data[task] = (golds, probs), metric
else:
scores = [line[metric] for line in fc["predictions"][task]]
data[task] = scores, metric
# make sure all tasks are submitted
METADATA_FILE = "tasks_metadata.json"
with open(METADATA_FILE, "r") as f:
metadata = json.load(f)
all_tasks = list(metadata["tasks"].keys())
all_missing_tasks = []
for task in all_tasks:
if task not in data:
all_missing_tasks.append(task)
if len(all_missing_tasks) > 0:
EOLN = "\n"
raise ValueError(f"Missing tasks in {file_path}: {EOLN.join(all_missing_tasks)}")
return data
def process_task(task, dataA, dataB, significance_level):
metricA = dataA[task][1]
metricB = dataB[task][1]
assert metricA == metricB
assert len(dataA[task]) == len(dataB[task])
if metricA == "avg_mcauroc":
p_value, delta = compute_significance_avg_mcauroc(probsA=dataA[task][0][1], referencesA=dataA[task][0][0],
probsB=dataB[task][0][1], referencesB=dataB[task][0][0])
elif metricA in ["acc", "exact_match"]:
p_value, delta = compute_significance_ttest(scores_A=dataA[task][0], scores_B=dataB[task][0])
elif metricA in ["rouge_raw_r2_mid_f", "word_perplexity"]:
p_value, delta = compute_significance_bootstrap(scores_A=np.array(dataA[task][0]),
scores_B=np.array(dataB[task][0]))
else:
raise ValueError(f"Unsupported metric {metricA}")
if delta <= 0:
p_value = 1.0
return task, {
"significant": not (p_value > significance_level),
"p_value": p_value,
"delta": delta,
}
def check_significance(fileA, fileB, significance_level=0.05):
dataA = read_json(fileA)
dataB = read_json(fileB)
decisions = dict()
_iter = tqdm(list(dataA.keys()))
for task in _iter:
_iter.set_description(f"Processing task: {task}")
metricA = dataA[task][1]
metricB = dataB[task][1]
assert metricA == metricB
assert len(dataA[task]) == len(dataB[task])
if metricA == "avg_mcauroc":
p_value, delta = compute_significance_avg_mcauroc(probsA=dataA[task][0][1], referencesA=dataA[task][0][0],
probsB=dataB[task][0][1], referencesB=dataB[task][0][0])
elif metricA in ["acc", "exact_match"]:
p_value, delta = compute_significance_ttest(scores_A=dataA[task][0], scores_B=dataB[task][0])
elif metricA in ["rouge_raw_r2_mid_f", "word_perplexity"]:
p_value, delta = compute_significance_bootstrap(scores_A=np.array(dataA[task][0]),
scores_B=np.array(dataB[task][0]))
else:
raise ValueError(f"Unsupported metric {metricA}")
if delta <= 0:
p_value = 1.0
decisions[task] = {
"significant": not (p_value > significance_level),
"p_value": p_value,
"delta": delta,
}
return decisions
def main():
parser = argparse.ArgumentParser(description="One-tailed test if model A improves over model B.")
parser.add_argument("--modelA", help="ModelA JSON file from lm harness.")
parser.add_argument("--modelB", help="ModelB JSON file from lm harness.")
parser.add_argument("--significance_level", type=float, default=0.05, help="Significance level (e.g., 0.05)")
args = parser.parse_args()
result = check_significance(args.modelA, args.modelB, args.significance_level)
print(json.dumps(result, indent=2))
# harness already returns stderr estimate for sampling distribution
# see https://github.com/EleutherAI/lm-evaluation-harness/blob/6433bd3fe3033d302b22cdcd53af237e9039ef29/lm_eval/api/metrics.py#L213
if __name__ == "__main__":
check_significance("../csmpt.json", "../llama3_instruct.json", 0.05)
main()
|