File size: 15,435 Bytes
b66f230
 
 
 
3efe661
 
9bf22cb
 
b35e51f
e576387
23ee797
658f16d
f3684c5
b66f230
 
 
 
 
23ee797
23931c3
 
b66f230
 
 
83bc9f9
b66f230
 
 
 
ff6fff7
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
23ee797
a737c6b
23ee797
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
34b3a82
23ee797
 
 
 
 
 
 
b66f230
 
 
 
219886f
 
 
 
 
 
b35e51f
c93b288
 
f46c803
b66f230
 
 
 
 
 
219886f
 
 
 
 
 
b66f230
 
 
 
 
 
 
 
 
 
 
 
 
b35e51f
 
b66f230
 
 
b35e51f
b66f230
 
b35e51f
b66f230
1b0a7e3
658f16d
1b0a7e3
b66f230
658f16d
b66f230
 
23931c3
658f16d
b35e51f
b66f230
658f16d
 
b66f230
b35e51f
b66f230
 
 
b35e51f
 
 
 
b66f230
23931c3
f0196fa
33e78e2
23931c3
658f16d
f0196fa
1b0a7e3
f0196fa
 
 
 
 
 
 
 
 
66ea54e
11d85cb
f0196fa
 
11d85cb
f0196fa
 
 
 
8f5a802
f0196fa
 
 
 
 
 
1b0a7e3
f0196fa
 
07329a3
f0196fa
 
 
52f1ee8
fd7c00b
 
ff6fff7
e576387
 
 
 
 
f0196fa
658f16d
23931c3
b66f230
23931c3
 
e576387
 
 
 
fb91218
e576387
 
 
0cd1497
76b7a19
e576387
 
 
 
 
 
 
 
 
fb91218
e576387
88fe528
 
 
 
 
 
 
 
 
b66f230
e576387
 
33e78e2
219886f
e576387
219886f
b66f230
 
b35e51f
b66f230
b35e51f
 
219886f
 
23ee797
658f16d
23ee797
 
 
 
 
 
658f16d
b66f230
 
658f16d
b66f230
 
 
 
52f1ee8
 
 
 
 
 
 
 
090213e
52f1ee8
7474e5d
52f1ee8
090213e
52f1ee8
090213e
52f1ee8
b35e51f
 
658f16d
b35e51f
 
 
 
 
 
d8f2525
b35e51f
 
 
 
 
 
 
 
 
 
 
 
658f16d
 
 
b66f230
 
 
b35e51f
b66f230
b35e51f
 
 
 
 
 
 
e576387
 
b66f230
219886f
b35e51f
 
658f16d
b66f230
 
 
b35e51f
b66f230
 
b35e51f
b66f230
 
 
 
 
 
 
 
219886f
b66f230
 
 
 
 
 
 
 
23931c3
 
b35e51f
23931c3
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
import copy
import glob
import json
import os
print(f"{os.environ.get('CURL_CA_BUNDLE') = }")
print(f"{os.environ.get('REQUESTS_CA_BUNDLE') = }")
os.environ['CURL_CA_BUNDLE'] = ''
os.environ['REQUESTS_CA_BUNDLE'] = ''
import hashlib
import time
import requests
from collections import namedtuple
from xml.sax.saxutils import escape as xmlEscape, quoteattr as xmlQuoteAttr

import gradio as gr
import pandas as pd
from huggingface_hub import HfApi, snapshot_download

from compare_significance import SUPPORTED_METRICS

VISIBLE_METRICS = SUPPORTED_METRICS + ["macro_f1"]

api = HfApi()

ORG = "xdolez52"
REPO = f"{ORG}/LLM_benchmark_data"
HF_TOKEN = os.environ.get("HF_TOKEN")
TASKS_METADATA_PATH = "./tasks_metadata.json"

MARKDOWN_SPECIAL_CHARACTERS = {
    "#": "#",  # for usage in xml.sax.saxutils.escape as entities must be first
    "\\": "\",
    "`": "`",
    "*": "*",
    "_": "_",
    "{": "{",
    "}": "}",
    "[": "[",
    "]": "]",
    "(": "(",
    ")": ")",
    "+": "+",
    "-": "-",
    ".": ".",
    "!": "!",
    "=": "=",
    "|": "|"
}

def check_significance_send_task(model_a_path, model_b_path):
    url = 'https://czechllm.fit.vutbr.cz:4443/benczechmark-leaderboard/compare_significance/'

    # prepare and send request
    with (
        open(model_a_path, 'rb') as model_a_fp,
        open(model_b_path, 'rb') as model_b_fp,
    ):
        files = {
            'model_a': model_a_fp,
            'model_b': model_b_fp,
        }
        response = requests.post(url, files=files)

    # check response
    if response.status_code == 202:
        result_url = response.url
        #task_id = response.json()['task_id']
    elif response.status_code == 429:
        raise RuntimeError('Server is too busy. Please try again later.')  # TODO: try-except do raise gr.error
    else:
        raise RuntimeError(f'Failed to submit task. Status code: {response.status_code}')  # TODO: try-except do raise gr.error

    return result_url

def check_significance_wait_for_result(result_url):
    while True:
        response = requests.get(result_url)
        if response.status_code == 200:
            result = response.json()
            break
        elif response.status_code == 202:
            time.sleep(5)
        else:
            raise RuntimeError(f'Failed to get result. Status code: {response.status_code}')  # TODO: try-except do raise gr.error
    
    print(result)
    return result['result']

def check_significance(model_a_path, model_b_path):
    result_url = check_significance_send_task(model_a_path, model_b_path)
    result = check_significance_wait_for_result(result_url)
    return result

class LeaderboardServer:
    def __init__(self):
        self.server_address = REPO
        self.repo_type = "dataset"
        self.local_leaderboard = snapshot_download(
            self.server_address,
            repo_type=self.repo_type,
            token=HF_TOKEN,
            local_dir="./",
        )
        self.submission_id_to_file = {}  # Map submission ids to file paths
        self.tasks_metadata = json.load(open(TASKS_METADATA_PATH))
        self.tasks_categories = {self.tasks_metadata[task]["category"] for task in self.tasks_metadata}
        self.tasks_category_overall = "Overall"
        self.submission_ids = set()
        self.fetch_existing_models()
        self.tournament_results = self.load_tournament_results()
        self.pre_submit = None

    def update_leaderboard(self):
        self.local_leaderboard = snapshot_download(
            self.server_address,
            repo_type=self.repo_type,
            token=HF_TOKEN,
            local_dir="./",
        )
        self.fetch_existing_models()
        self.tournament_results = self.load_tournament_results()

    def load_tournament_results(self):
        metadata_rank_paths = os.path.join(self.local_leaderboard, "tournament.json")
        if not os.path.exists(metadata_rank_paths):
            return {}
        with open(metadata_rank_paths) as ranks_file:
            results = json.load(ranks_file)
        return results

    def fetch_existing_models(self):
        # Models data
        for submission_file in glob.glob(os.path.join(self.local_leaderboard, "data") + "/*.json"):
            data = json.load(open(submission_file))
            metadata = data.get('metadata')
            if metadata is None:
                continue
            submission_id = metadata["submission_id"]
            self.submission_ids.add(submission_id)

            self.submission_id_to_file[submission_id] = submission_file

    def get_leaderboard(self, tournament_results=None, category=None):
        tournament_results = tournament_results if tournament_results else self.tournament_results
        category = category if category else self.tasks_category_overall

        if len(tournament_results) == 0:
            return pd.DataFrame(columns=['No submissions yet'])
        else:
            processed_results = []
            for submission_id in tournament_results.keys():
                path = self.submission_id_to_file.get(submission_id)
                if path is None:
                    if self.pre_submit and submission_id == self.pre_submit.submission_id:
                        data = json.load(open(self.pre_submit.file))
                    else:
                        raise gr.Error(f"Internal error: Submission [{submission_id}] not found")
                elif path:
                    data = json.load(open(path))
                else:
                    raise gr.Error(f"Submission [{submission_id}] not found")
                
                if submission_id != data["metadata"]["submission_id"]:
                    raise gr.Error(f"Proper submission [{submission_id}] not found")

                local_results = {}
                win_score = {}
                visible_metrics_map_word_to_header = {}
                for task in self.tasks_metadata.keys():
                    
                    task_category = self.tasks_metadata[task]["category"]
                    if category not in (self.tasks_category_overall, task_category):
                        continue
                    else:
                        # tournament_results
                        num_of_competitors = 0
                        num_of_wins = 0
                        for competitor_id in tournament_results[submission_id].keys() - {submission_id}: # without self
                            num_of_competitors += 1
                            if tournament_results[submission_id][competitor_id][task]:
                                num_of_wins += 1
                        task_score = num_of_wins / num_of_competitors * 100 # TODO: if num_of_competitors > 0 else ???
                        win_score.setdefault(task_category, []).append(task_score)
                        
                        if category == task_category:
                            local_results[task] = task_score
                            for metric in VISIBLE_METRICS:
                                visible_metrics_map_word_to_header[task + "_" + metric] = self.tasks_metadata[task]["abbreviation"] + " " + metric
                                metric_value = data['results'][task].get(metric)
                                if metric_value is not None:
                                    local_results[task + "_" + metric] = metric_value * 100
                                    break  # Only the first metric of every task
                
                
                for c in win_score:
                    win_score[c] = sum(win_score[c]) / len(win_score[c])
                
                if category == self.tasks_category_overall:
                    for c in win_score:
                        local_results[c] = win_score[c]
                    local_results["average_score"] = sum(win_score.values()) / len(win_score)
                else:
                    local_results["average_score"] = win_score[category]
                
                model_link = data["metadata"]["link_to_model"]
                model_title = data["metadata"]["team_name"] + "/" + data["metadata"]["model_name"]
                model_title_abbr = self.abbreviate(data["metadata"]["team_name"], 14) + "/" + self.abbreviate(data["metadata"]["model_name"], 14)
                local_results["model"] = f'<a href={xmlQuoteAttr(model_link)} title={xmlQuoteAttr(model_title)}>{xmlEscape(model_title_abbr, MARKDOWN_SPECIAL_CHARACTERS)}</a>'
                release = data["metadata"].get("submission_timestamp")
                release = time.strftime("%Y-%m-%d", time.gmtime(release)) if release else "N/A"
                local_results["release"] = release
                local_results["model_type"] = data["metadata"]["model_type"]
                local_results["parameters"] = data["metadata"]["parameters"]
                
                if self.pre_submit and submission_id == self.pre_submit.submission_id:
                    processed_results.insert(0, local_results)
                else:
                    processed_results.append(local_results)
            dataframe = pd.DataFrame.from_records(processed_results)
            
            extra_attributes_map_word_to_header = {
                "model": "Model",
                "release": "Release",
                "average_score": "Average ⬆️",
                "team_name": "Team name",
                "model_name": "Model name",
                "model_type": "Type",
                "parameters": "# θ (B)",
                "input_length": "Input length (# tokens)",
                "precision": "Precision",
                "description": "Description",
                "link_to_model": "Link to model"
            }
            first_attributes = [
                "model",
                "release",
                "model_type",
                "parameters",
                "average_score",
            ]
            df_order = [
                key
                for key in dict.fromkeys(
                    first_attributes
                    + list(self.tasks_metadata.keys())
                    + list(dataframe.columns)
                ).keys()
                if key in dataframe.columns
            ]
            dataframe = dataframe[df_order]
            attributes_map_word_to_header = {key: value["abbreviation"] for key, value in self.tasks_metadata.items()}
            attributes_map_word_to_header.update(extra_attributes_map_word_to_header)
            attributes_map_word_to_header.update(visible_metrics_map_word_to_header)
            dataframe = dataframe.rename(
                columns=attributes_map_word_to_header
            )
            return dataframe

    def start_tournament(self, new_submission_id, new_model_file):
        new_tournament = copy.deepcopy(self.tournament_results)
        new_tournament[new_submission_id] = {}
        new_tournament[new_submission_id][new_submission_id] = {
            task: False for task in self.tasks_metadata.keys()
        }
        
        for competitor_id in self.submission_ids:
            res = check_significance_send_task(new_model_file, self.submission_id_to_file[competitor_id])
            res_inverse = check_significance_send_task(self.submission_id_to_file[competitor_id], new_model_file)
            
            res = check_significance_wait_for_result(res)
            res_inverse = check_significance_wait_for_result(res_inverse)
            
            new_tournament[new_submission_id][competitor_id] = {
                task: data["significant"] for task, data in res.items()
            }
            new_tournament[competitor_id][new_submission_id] = {
                task: data["significant"] for task, data in res_inverse.items()
            }
        return new_tournament

    @staticmethod
    def abbreviate(s, max_length, dots_place="center"):
        if len(s) <= max_length:
            return s
        else:
            if max_length <= 1:
                return "…"
            elif dots_place == "begin":
                return "…" + s[-max_length + 1:].lstrip()
            elif dots_place == "center" and max_length >= 3:
                max_length_begin = max_length // 2
                max_length_end = max_length - max_length_begin - 1
                return s[:max_length_begin].rstrip() + "…" + s[-max_length_end:].lstrip()
            else:  # dots_place == "end"
                return s[:max_length - 1].rstrip() + "…"

    @staticmethod
    def create_submission_id(metadata):
        # Délka ID musí být omezena, protože se používá v názvu souboru
        submission_id = "_".join([metadata[key][:7] for key in (
            "team_name",
            "model_name",
            "model_predictions_sha256",
            "model_results_sha256",
        )])
        submission_id = submission_id.replace("/", "_").replace("\n", "_").strip()
        return submission_id

    @staticmethod
    def get_sha256_hexdigest(obj):
        data = json.dumps(
            obj,
            separators=(',', ':'),
            sort_keys=True,
            ensure_ascii=True,
        ).encode()
        result = hashlib.sha256(data).hexdigest()
        return result
    
    PreSubmit = namedtuple('PreSubmit', 'tournament_results, submission_id, file')
    
    def prepare_model_for_submission(self, file, metadata) -> None:
        with open(file, "r") as f:
            data = json.load(f)
        
        data["metadata"] = metadata
        
        metadata["model_predictions_sha256"] = self.get_sha256_hexdigest(data["predictions"])
        metadata["model_results_sha256"] = self.get_sha256_hexdigest(data["results"])
        
        submission_id = self.create_submission_id(metadata)
        metadata["submission_id"] = submission_id
        
        metadata["submission_timestamp"] = time.time()  # timestamp
        
        with open(file, "w") as f:
            json.dump(data, f, separators=(',', ':'))  # compact JSON
        
        tournament_results = self.start_tournament(submission_id, file)
        self.pre_submit = self.PreSubmit(tournament_results, submission_id, file)

    def save_pre_submit(self):
        if self.pre_submit:
            tournament_results, submission_id, file = self.pre_submit
            api.upload_file(
                path_or_fileobj=file,
                path_in_repo=f"data/{submission_id}.json",
                repo_id=self.server_address,
                repo_type=self.repo_type,
                token=HF_TOKEN,
            )

            # Temporary save tournament results
            tournament_results_path = os.path.join(self.local_leaderboard, "tournament.json")
            with open(tournament_results_path, "w") as f:
                json.dump(tournament_results, f, sort_keys=True, indent=2)  # readable JSON

            api.upload_file(
                path_or_fileobj=tournament_results_path,
                path_in_repo="tournament.json",
                repo_id=self.server_address,
                repo_type=self.repo_type,
                token=HF_TOKEN,
            )

    def get_model_detail(self, submission_id):
        path = self.submission_id_to_file.get(submission_id)
        if path is None:
            raise gr.Error(f"Submission [{submission_id}] not found")
        data = json.load(open(path))
        return data["metadata"]