Spaces:
Sleeping
Sleeping
path_work = "." | |
# hf_token | |
from dotenv import load_dotenv | |
load_dotenv() | |
import os | |
hf_token = os.getenv("HUGGINGFACEHUB_API_TOKEN") | |
# [์ ํ1] ๊ฑฐ๋๋ชจ๋ธ ๋ญ์ฒด์ธ Custom LLM (HF InferenceClient) - 70B๊ฐ ๋ฌด๋ฃ!!!, openai๋ณด๋ค ์ฑ๋ฅ ์๋จ์ด์ง (์คํธ๋ฆฌ๋ฐ์ ์์ง ์๋จ) | |
# model_name = "tiiuae/falcon-180B-chat" | |
model_name="meta-llama/Llama-2-70b-chat-hf" | |
# model_name="NousResearch/Llama-2-70b-chat-hf" | |
# model_name="meta-llama/Llama-2-13b-chat-hf" | |
# model_name="meta-llama/Llama-2-7b-chat-hf" | |
# model_name = "HuggingFaceH4/zephyr-7b-alpha" | |
kwargs = {"max_new_tokens":256, "temperature":0.9, "top_p":0.6, "repetition_penalty":1.3, "do_sample":True} | |
# ์ปค์คํ LLM | |
from pydantic import BaseModel, Field | |
from typing import Any, Optional, Dict, List | |
from huggingface_hub import InferenceClient | |
from langchain.llms.base import LLM | |
class KwArgsModel(BaseModel): | |
kwargs: Dict[str, Any] = Field(default_factory=dict) | |
class CustomInferenceClient(LLM, KwArgsModel): | |
model_name: str | |
inference_client: InferenceClient | |
def __init__(self, model_name: str, hf_token: str, kwargs: Optional[Dict[str, Any]] = None): | |
inference_client = InferenceClient(model=model_name, token=hf_token) | |
super().__init__( | |
model_name=model_name, | |
hf_token=hf_token, | |
kwargs=kwargs, | |
inference_client=inference_client # inference_client ์ธ์ ์ถ๊ฐ | |
) | |
def _call( | |
self, | |
prompt: str, | |
stop: Optional[List[str]] = None | |
) -> str: | |
if stop is not None: | |
raise ValueError("stop kwargs are not permitted.") | |
# pdb.set_trace() | |
# response_gen = self.__dict__['client'].text_generation(prompt, stream=True, **self.kwargs) # ์ ์ฅ๋ kwargs๋ฅผ ์ฌ์ฉ, | |
response_gen = self.inference_client.text_generation(prompt, **self.kwargs, stream=True) | |
response = ''.join(response_gen) # ์ ๋๋ ์ดํฐ์ ๋ชจ๋ ๊ฐ์ ๋ฌธ์์ด๋ก ์ฐ๊ฒฐ | |
return response | |
def _llm_type(self) -> str: | |
return "custom" | |
def _identifying_params(self) -> dict: | |
return {"model_name": self.model_name} | |
# ์ฌ์ฉ ์์ : | |
# prompt="How do you make cheese?" | |
# prompt = "Tell me the names of the last 10 U.S. presidents" | |
prompt="Tell me 10 of the world's largest buildings in high order" | |
llm = CustomInferenceClient(model_name=model_name, hf_token=hf_token, kwargs=kwargs) # hf_token ์ฌ์ฉํ๋ ๊ฒฝ์ฐ | |
# llm = CustomInferenceClient(model_name=model_name, kwargs=kwargs) # hf_token ์ฌ์ฉํ์ง ์๋ ๊ฒฝ์ฐ | |
# ์๋ฒ ๋ฉ ๊ฐ์ฒด ์์ฑ | |
from langchain.embeddings import HuggingFaceInstructEmbeddings | |
embeddings = HuggingFaceInstructEmbeddings( | |
model_name="sentence-transformers/all-MiniLM-L6-v2", | |
cache_folder="./sentence-transformers/all-MiniLM-L6-v2", | |
model_kwargs={"device": "cpu"} | |
) | |
# ๋ฒกํฐDB ๋ก๋ | |
path_work ='.' | |
from langchain.vectorstores import Chroma | |
vectordb = Chroma( | |
persist_directory = path_work + '/cromadb_llama2-papers', | |
embedding_function=embeddings) | |
retriever = vectordb.as_retriever(search_kwargs={"k": 5}) | |
# RetrievalQA ์ฒด์ธ ๋ง๋ค๊ธฐ | |
from langchain.chains import RetrievalQA | |
qa_chain = RetrievalQA.from_chain_type( | |
# llm=OpenAI(), # from langchain.llms import OpenAI | |
llm=llm, | |
chain_type="stuff", | |
retriever=retriever, | |
return_source_documents=True, | |
verbose=True, | |
) | |
qa_chain | |
# ๊ทธ๋ผ๋์ค | |
import json | |
import os | |
import gradio as gr | |
# Stream text | |
def predict(message, chatbot, temperature=0.9, max_new_tokens=512, top_p=0.6, repetition_penalty=1.3,): | |
temperature = float(temperature) | |
if temperature < 1e-2: temperature = 1e-2 | |
top_p = float(top_p) | |
# ํ๋กฌํํธ | |
# system_message = "\nYou are a psychological counselor who gives friendly and professional counseling on the concerns of Korean clients." | |
# input_prompt = f"[INST] <<SYS>>\n{system_message}\n<</SYS>>\n\n " | |
# for interaction in chatbot: | |
# input_prompt = input_prompt + str(interaction[0]) + " [/INST] " + str(interaction[1]) + " </s><s> [INST] " | |
# input_prompt = input_prompt + str(message) + " [/INST] " | |
# conversationalRetrievalChain (ํ์คํ ๋ฆฌ๊ฐ ์ฒด์ธ ๋ด์ฅ ํ๋กฌํํธ์ ์ธํ๋จ) | |
# chat_history = [] | |
# for interaction in chatbot: | |
# chat_history = chat_history + [(str(interaction[0]), str(interaction[1]))] | |
# llm_response = qa_chain_conv({"question": message, "chat_history": chat_history}) | |
# res_result = llm_response['answer'] | |
# RetrievalQA ์ฒด์ธ (ํ์คํ ๋ฆฌ๊ฐ ์ฒด์ธ ๋ด์ฅ ํ๋กฌํํธ์ ์ธํ ์๋จ) | |
llm_response = qa_chain(message) | |
res_result = llm_response['result'] | |
# conversationalRetrievalChain, RetrievalQA ์ฒด์ธ ๊ณตํต | |
res_relevant_doc = [source.metadata['source'] for source in llm_response["source_documents"]] | |
response = f"{res_result}" + "\n\n" + "[๋ต๋ณ ๊ทผ๊ฑฐ ์์ค ๋ ผ๋ฌธ (ctrl + click ํ์ธ์!)] :" + "\n" + f" \n {res_relevant_doc}" | |
print("response: =====> \n", response, "\n\n") | |
#3) json ํํ๋ก ๋ณํ (api response์ ๊ฐ์ ํํ) | |
import json | |
tokens = response.split('\n') | |
token_list = [] | |
for idx, token in enumerate(tokens): | |
token_dict = {"id": idx + 1, "text": token} | |
token_list.append(token_dict) | |
response = {"data": {"token": token_list}} | |
response = json.dumps(response, indent=4) | |
'''{'data': {'token': [{'id': 1, 'text': 'Artificial intelligence (AI) refers to...'}, | |
{'id': 2, 'text': 'I hope this information helher questions!'}]}}''' | |
# =========================================================================== | |
# ์คํธ๋ฆฌ๋ฐ ์์ (partial_message) | |
response = json.loads(response) # {'data': {'token': [{'id': 1, 'text': '๋ต๋ณ์ " ์๋ ํ์ธ์. ์ ๋ ์ก์์ง ๋ฐ์ฌ..... | |
data_dict = response.get('data', {}) | |
token_list = data_dict.get('token', []) | |
import time | |
partial_message = "" | |
# ํ์ด๋ผ์ดํธ: .iter_lines() ๋์ ์ token_list๋ฅผ ์ง์ ์ํํฉ๋๋ค. | |
for token_entry in token_list: | |
if token_entry: # filter out keep-alive new lines (if any) | |
try: | |
# ํ์ด๋ผ์ดํธ: ์ง์ ์ฌ์ ์์ 'id'์ 'text'๋ฅผ ์ถ์ถํฉ๋๋ค. | |
token_id = token_entry.get('id', None) | |
token_text = token_entry.get('text', None) | |
# time.sleep์ผ๋ก ๊ธ์ ์๋ ์กฐ์ ํ๋ฉฐ ๊ธ์ ๋ด๋ณด๋ | |
if token_text: # ์ด ๋ถ๋ถ์ ์ํ๋ ๋๋ก ์กฐ์ ํ ์ ์์ต๋๋ค. | |
# partial_message = partial_message + token_text | |
for char in token_text: # ๋ฌธ์ ํ๋์ฉ ์ํ (์ถ๊ฐ๋จ) | |
partial_message += char # partial_message์ ๋ฌธ์ ์ถ๊ฐ (๋ณ๊ฒฝ๋จ) | |
yield partial_message | |
time.sleep(0.01) | |
else: | |
# gr.Warning(f"The key 'text' does not exist or is None in this token entry: {token_entry}") | |
print(f"[[์๋]] ==> The key 'text' does not exist or is None in this token entry: {token_entry}") | |
except KeyError as e: | |
gr.Warning(f"KeyError: {e} occurred for token entry: {token_entry}") | |
continue | |
# ํ์ดํ/์ค๋ช /์ง๋ฌธ์์ | |
title = "llama-2 ๋ชจ๋ธ ๊ด๋ จ ๋ ผ๋ฌธ QA ์๋น์ค" | |
description = """chat history ์ ์ง ๋ณด๋ค๋ QA์ ์ถฉ์คํ๋๋ก ์ ์๋์์ผ๋ Single turn์ผ๋ก ํ์ฉ์ ํ์ฌ ์ฃผ์ธ์. (chat history ํ์ฉ์ ๋ค๋ฅธ ์ฃผ์ ๋ก ๋ณ๋ ์ ์ ์์ )""" | |
css = """.toast-wrap { display: none !important } """ | |
examples=[['Can you tell me about the llama-2 model?'],['What is percent accuracy, using the SPP layer as features on the SPP (ZF-5) model?'], ['What is percent accuracy, using the SPP layer as features on the SPP (ZF-5) model?'], ["tell me about method for human pose estimation based on DNNs"]] | |
# ์ข์์ | |
import gradio as gr | |
def vote(data: gr.LikeData): | |
if data.liked: print("You upvoted this response: " + data.value) | |
else: print("You downvoted this response: " + data.value) | |
# ๊ทธ๋ผ๋์ค (์ธ์ ์กฐ์ ) | |
additional_inputs = [ | |
# gr.Textbox("", label="Optional system prompt"), | |
gr.Slider(label="Temperature", value=0.9, minimum=0.0, maximum=1.0, step=0.05, interactive=True, info="Higher values produce more diverse outputs"), | |
gr.Slider(label="Max new tokens", value=256, minimum=0, maximum=4096, step=64, interactive=True, info="The maximum numbers of new tokens"), | |
gr.Slider(label="Top-p (nucleus sampling)", value=0.6, minimum=0.0, maximum=1, step=0.05, interactive=True, info="Higher values sample more low-probability tokens"), | |
gr.Slider(label="Repetition penalty", value=1.2, minimum=1.0, maximum=2.0, step=0.05, interactive=True, info="Penalize repeated tokens") | |
] | |
chatbot_stream = gr.Chatbot(avatar_images=( | |
"https://drive.google.com/uc?id=13rYrN0cH_9tR7GveqO1q2JiyBCqkfCLZ", # https://drive.google.com/uc?id= ๋ค์ ID๊ฐ๋ง (๋ชจ๋ ์ฌ์ฉ์ ์ก์ธ์ค ๊ถํ ํ์ฉ) | |
"https://drive.google.com/uc?id=1tfELAQW_VbPCy6QTRbexRlwAEYo8rSSv" | |
), bubble_full_width = False) | |
chat_interface_stream = gr.ChatInterface(predict, | |
title=title, | |
description=description, | |
# textbox=gr.Textbox(lines=5), | |
chatbot=chatbot_stream, | |
css=css, | |
examples=examples, | |
# cache_examples=True, | |
# additional_inputs=additional_inputs, | |
) | |
# Gradio Demo | |
with gr.Blocks() as demo: | |
with gr.Tab("์คํธ๋ฆฌ๋ฐ"): | |
#gr.ChatInterface(predict, title=title, description=description, css=css, examples=examples, cache_examples=True, additional_inputs=additional_inputs,) | |
chatbot_stream.like(vote, None, None) | |
chat_interface_stream.render() | |
demo.queue(concurrency_count=75, max_size=100).launch(debug=True) | |