path_work = "."
# hf_token
from dotenv import load_dotenv
load_dotenv()
import os
hf_token = os.getenv("HUGGINGFACEHUB_API_TOKEN")
# [선택1] 거대모델 랭체인 Custom LLM (HF InferenceClient) - 70B가 무료!!!, openai보다 성능 안떨어짐 (스트리밍은 아직 안됨)
# model_name = "tiiuae/falcon-180B-chat"
model_name="meta-llama/Llama-2-70b-chat-hf"
# model_name="NousResearch/Llama-2-70b-chat-hf"
# model_name="meta-llama/Llama-2-13b-chat-hf"
# model_name="meta-llama/Llama-2-7b-chat-hf"
# model_name = "HuggingFaceH4/zephyr-7b-alpha"
kwargs = {"max_new_tokens":256, "temperature":0.9, "top_p":0.6, "repetition_penalty":1.3, "do_sample":True}
# 커스텀 LLM
from pydantic import BaseModel, Field
from typing import Any, Optional, Dict, List
from huggingface_hub import InferenceClient
from langchain.llms.base import LLM
class KwArgsModel(BaseModel):
kwargs: Dict[str, Any] = Field(default_factory=dict)
class CustomInferenceClient(LLM, KwArgsModel):
model_name: str
inference_client: InferenceClient
def __init__(self, model_name: str, hf_token: str, kwargs: Optional[Dict[str, Any]] = None):
inference_client = InferenceClient(model=model_name, token=hf_token)
super().__init__(
model_name=model_name,
hf_token=hf_token,
kwargs=kwargs,
inference_client=inference_client # inference_client 인자 추가
)
def _call(
self,
prompt: str,
stop: Optional[List[str]] = None
) -> str:
if stop is not None:
raise ValueError("stop kwargs are not permitted.")
# pdb.set_trace()
# response_gen = self.__dict__['client'].text_generation(prompt, stream=True, **self.kwargs) # 저장된 kwargs를 사용,
response_gen = self.inference_client.text_generation(prompt, **self.kwargs, stream=True)
response = ''.join(response_gen) # 제너레이터의 모든 값을 문자열로 연결
return response
@property
def _llm_type(self) -> str:
return "custom"
@property
def _identifying_params(self) -> dict:
return {"model_name": self.model_name}
# 사용 예제:
# prompt="How do you make cheese?"
# prompt = "Tell me the names of the last 10 U.S. presidents"
prompt="Tell me 10 of the world's largest buildings in high order"
llm = CustomInferenceClient(model_name=model_name, hf_token=hf_token, kwargs=kwargs) # hf_token 사용하는 경우
# llm = CustomInferenceClient(model_name=model_name, kwargs=kwargs) # hf_token 사용하지 않는 경우
# 임베딩 객체 생성
from langchain.embeddings import HuggingFaceInstructEmbeddings
embeddings = HuggingFaceInstructEmbeddings(
# model_name="sentence-transformers/all-MiniLM-L6-v2",
cache_folder="./sentence-transformers/all-MiniLM-L6-v2",
model_kwargs={"device": "cpu"}
)
# 벡터DB 로드
path_work ='.'
from langchain.vectorstores import Chroma
vectordb = Chroma(
persist_directory = path_work + '/cromadb_llama2-papers',
embedding_function=embeddings)
retriever = vectordb.as_retriever(search_kwargs={"k": 5})
# RetrievalQA 체인 만들기
from langchain.chains import RetrievalQA
qa_chain = RetrievalQA.from_chain_type(
# llm=OpenAI(), # from langchain.llms import OpenAI
llm=llm,
chain_type="stuff",
retriever=retriever,
return_source_documents=True,
verbose=True,
)
qa_chain
# 그라디오
import json
import os
import gradio as gr
# Stream text
def predict(message, chatbot, temperature=0.9, max_new_tokens=512, top_p=0.6, repetition_penalty=1.3,):
temperature = float(temperature)
if temperature < 1e-2: temperature = 1e-2
top_p = float(top_p)
# 프롬프트
# system_message = "\nYou are a psychological counselor who gives friendly and professional counseling on the concerns of Korean clients."
# input_prompt = f"[INST] <>\n{system_message}\n<>\n\n "
# for interaction in chatbot:
# input_prompt = input_prompt + str(interaction[0]) + " [/INST] " + str(interaction[1]) + " [INST] "
# input_prompt = input_prompt + str(message) + " [/INST] "
# conversationalRetrievalChain (히스토리가 체인 내장 프롬프트에 인풋됨)
# chat_history = []
# for interaction in chatbot:
# chat_history = chat_history + [(str(interaction[0]), str(interaction[1]))]
# llm_response = qa_chain_conv({"question": message, "chat_history": chat_history})
# res_result = llm_response['answer']
# RetrievalQA 체인 (히스토리가 체인 내장 프롬프트에 인풋 안됨)
llm_response = qa_chain(message)
res_result = llm_response['result']
# conversationalRetrievalChain, RetrievalQA 체인 공통
res_relevant_doc = [source.metadata['source'] for source in llm_response["source_documents"]]
response = f"{res_result}" + "\n\n" + "[답변 근거 소스 논문 (ctrl + click 하세요!)] :" + "\n" + f" \n {res_relevant_doc}"
print("response: =====> \n", response, "\n\n")
#3) json 형태로 변환 (api response와 같은 형태)
import json
tokens = response.split('\n')
token_list = []
for idx, token in enumerate(tokens):
token_dict = {"id": idx + 1, "text": token}
token_list.append(token_dict)
response = {"data": {"token": token_list}}
response = json.dumps(response, indent=4)
'''{'data': {'token': [{'id': 1, 'text': 'Artificial intelligence (AI) refers to...'},
{'id': 2, 'text': 'I hope this information helher questions!'}]}}'''
# ===========================================================================
# 스트리밍 시작 (partial_message)
response = json.loads(response) # {'data': {'token': [{'id': 1, 'text': '답변은 " 안녕하세요. 저는 송상진 박사.....
data_dict = response.get('data', {})
token_list = data_dict.get('token', [])
import time
partial_message = ""
# 하이라이트: .iter_lines() 대신에 token_list를 직접 순회합니다.
for token_entry in token_list:
if token_entry: # filter out keep-alive new lines (if any)
try:
# 하이라이트: 직접 사전에서 'id'와 'text'를 추출합니다.
token_id = token_entry.get('id', None)
token_text = token_entry.get('text', None)
# time.sleep으로 글자 속도 조절하며 글자 내보냄
if token_text: # 이 부분은 원하는 대로 조정할 수 있습니다.
# partial_message = partial_message + token_text
for char in token_text: # 문자 하나씩 순회 (추가됨)
partial_message += char # partial_message에 문자 추가 (변경됨)
yield partial_message
time.sleep(0.01)
else:
# gr.Warning(f"The key 'text' does not exist or is None in this token entry: {token_entry}")
print(f"[[워닝]] ==> The key 'text' does not exist or is None in this token entry: {token_entry}")
except KeyError as e:
gr.Warning(f"KeyError: {e} occurred for token entry: {token_entry}")
continue
# 타이틀/설명/질문예시
title = "llama-2 모델 관련 논문 QA 서비스"
description = """chat history 유지 보다는 QA에 충실하도록 제작되었으니 Single turn으로 활용을 하여 주세요. (chat history 활용은 다른 주제로 별도 제작 예정)"""
css = """.toast-wrap { display: none !important } """
examples=[['Can you tell me about the llama-2 model?'],['What is percent accuracy, using the SPP layer as features on the SPP (ZF-5) model?'], ['What is percent accuracy, using the SPP layer as features on the SPP (ZF-5) model?'], ["tell me about method for human pose estimation based on DNNs"]]
# 좋아요
import gradio as gr
def vote(data: gr.LikeData):
if data.liked: print("You upvoted this response: " + data.value)
else: print("You downvoted this response: " + data.value)
# 그라디오 (인자 조절)
additional_inputs = [
# gr.Textbox("", label="Optional system prompt"),
gr.Slider(label="Temperature", value=0.9, minimum=0.0, maximum=1.0, step=0.05, interactive=True, info="Higher values produce more diverse outputs"),
gr.Slider(label="Max new tokens", value=256, minimum=0, maximum=4096, step=64, interactive=True, info="The maximum numbers of new tokens"),
gr.Slider(label="Top-p (nucleus sampling)", value=0.6, minimum=0.0, maximum=1, step=0.05, interactive=True, info="Higher values sample more low-probability tokens"),
gr.Slider(label="Repetition penalty", value=1.2, minimum=1.0, maximum=2.0, step=0.05, interactive=True, info="Penalize repeated tokens")
]
chatbot_stream = gr.Chatbot(avatar_images=(
"https://drive.google.com/uc?id=13rYrN0cH_9tR7GveqO1q2JiyBCqkfCLZ", # https://drive.google.com/uc?id= 뒤에 ID값만 (모두 사용자 액세스 권한 허용)
"https://drive.google.com/uc?id=1tfELAQW_VbPCy6QTRbexRlwAEYo8rSSv"
), bubble_full_width = False)
chat_interface_stream = gr.ChatInterface(predict,
title=title,
description=description,
# textbox=gr.Textbox(lines=5),
chatbot=chatbot_stream,
css=css,
examples=examples,
# cache_examples=True,
# additional_inputs=additional_inputs,
)
# Gradio Demo
with gr.Blocks() as demo:
with gr.Tab("스트리밍"):
#gr.ChatInterface(predict, title=title, description=description, css=css, examples=examples, cache_examples=True, additional_inputs=additional_inputs,)
chatbot_stream.like(vote, None, None)
chat_interface_stream.render()
demo.queue(concurrency_count=75, max_size=100).launch(debug=True)