path_work = "." # hf_token from dotenv import load_dotenv load_dotenv() import os hf_token = os.getenv("HUGGINGFACEHUB_API_TOKEN") # [선택1] 거대모델 랭체인 Custom LLM (HF InferenceClient) - 70B가 무료!!!, openai보다 성능 안떨어짐 (스트리밍은 아직 안됨) # model_name = "tiiuae/falcon-180B-chat" model_name="meta-llama/Llama-2-70b-chat-hf" # model_name="NousResearch/Llama-2-70b-chat-hf" # model_name="meta-llama/Llama-2-13b-chat-hf" # model_name="meta-llama/Llama-2-7b-chat-hf" # model_name = "HuggingFaceH4/zephyr-7b-alpha" kwargs = {"max_new_tokens":256, "temperature":0.9, "top_p":0.6, "repetition_penalty":1.3, "do_sample":True} # 커스텀 LLM from pydantic import BaseModel, Field from typing import Any, Optional, Dict, List from huggingface_hub import InferenceClient from langchain.llms.base import LLM class KwArgsModel(BaseModel): kwargs: Dict[str, Any] = Field(default_factory=dict) class CustomInferenceClient(LLM, KwArgsModel): model_name: str inference_client: InferenceClient def __init__(self, model_name: str, hf_token: str, kwargs: Optional[Dict[str, Any]] = None): inference_client = InferenceClient(model=model_name, token=hf_token) super().__init__( model_name=model_name, hf_token=hf_token, kwargs=kwargs, inference_client=inference_client # inference_client 인자 추가 ) def _call( self, prompt: str, stop: Optional[List[str]] = None ) -> str: if stop is not None: raise ValueError("stop kwargs are not permitted.") # pdb.set_trace() # response_gen = self.__dict__['client'].text_generation(prompt, stream=True, **self.kwargs) # 저장된 kwargs를 사용, response_gen = self.inference_client.text_generation(prompt, **self.kwargs, stream=True) response = ''.join(response_gen) # 제너레이터의 모든 값을 문자열로 연결 return response @property def _llm_type(self) -> str: return "custom" @property def _identifying_params(self) -> dict: return {"model_name": self.model_name} # 사용 예제: # prompt="How do you make cheese?" # prompt = "Tell me the names of the last 10 U.S. presidents" prompt="Tell me 10 of the world's largest buildings in high order" llm = CustomInferenceClient(model_name=model_name, hf_token=hf_token, kwargs=kwargs) # hf_token 사용하는 경우 # llm = CustomInferenceClient(model_name=model_name, kwargs=kwargs) # hf_token 사용하지 않는 경우 # 임베딩 객체 생성 from langchain.embeddings import HuggingFaceInstructEmbeddings embeddings = HuggingFaceInstructEmbeddings( # model_name="sentence-transformers/all-MiniLM-L6-v2", cache_folder="./sentence-transformers/all-MiniLM-L6-v2", model_kwargs={"device": "cpu"} ) # 벡터DB 로드 path_work ='.' from langchain.vectorstores import Chroma vectordb = Chroma( persist_directory = path_work + '/cromadb_llama2-papers', embedding_function=embeddings) retriever = vectordb.as_retriever(search_kwargs={"k": 5}) # RetrievalQA 체인 만들기 from langchain.chains import RetrievalQA qa_chain = RetrievalQA.from_chain_type( # llm=OpenAI(), # from langchain.llms import OpenAI llm=llm, chain_type="stuff", retriever=retriever, return_source_documents=True, verbose=True, ) qa_chain # 그라디오 import json import os import gradio as gr # Stream text def predict(message, chatbot, temperature=0.9, max_new_tokens=512, top_p=0.6, repetition_penalty=1.3,): temperature = float(temperature) if temperature < 1e-2: temperature = 1e-2 top_p = float(top_p) # 프롬프트 # system_message = "\nYou are a psychological counselor who gives friendly and professional counseling on the concerns of Korean clients." # input_prompt = f"[INST] <>\n{system_message}\n<>\n\n " # for interaction in chatbot: # input_prompt = input_prompt + str(interaction[0]) + " [/INST] " + str(interaction[1]) + " [INST] " # input_prompt = input_prompt + str(message) + " [/INST] " # conversationalRetrievalChain (히스토리가 체인 내장 프롬프트에 인풋됨) # chat_history = [] # for interaction in chatbot: # chat_history = chat_history + [(str(interaction[0]), str(interaction[1]))] # llm_response = qa_chain_conv({"question": message, "chat_history": chat_history}) # res_result = llm_response['answer'] # RetrievalQA 체인 (히스토리가 체인 내장 프롬프트에 인풋 안됨) llm_response = qa_chain(message) res_result = llm_response['result'] # conversationalRetrievalChain, RetrievalQA 체인 공통 res_relevant_doc = [source.metadata['source'] for source in llm_response["source_documents"]] response = f"{res_result}" + "\n\n" + "[답변 근거 소스 논문 (ctrl + click 하세요!)] :" + "\n" + f" \n {res_relevant_doc}" print("response: =====> \n", response, "\n\n") #3) json 형태로 변환 (api response와 같은 형태) import json tokens = response.split('\n') token_list = [] for idx, token in enumerate(tokens): token_dict = {"id": idx + 1, "text": token} token_list.append(token_dict) response = {"data": {"token": token_list}} response = json.dumps(response, indent=4) '''{'data': {'token': [{'id': 1, 'text': 'Artificial intelligence (AI) refers to...'}, {'id': 2, 'text': 'I hope this information helher questions!'}]}}''' # =========================================================================== # 스트리밍 시작 (partial_message) response = json.loads(response) # {'data': {'token': [{'id': 1, 'text': '답변은 " 안녕하세요. 저는 송상진 박사..... data_dict = response.get('data', {}) token_list = data_dict.get('token', []) import time partial_message = "" # 하이라이트: .iter_lines() 대신에 token_list를 직접 순회합니다. for token_entry in token_list: if token_entry: # filter out keep-alive new lines (if any) try: # 하이라이트: 직접 사전에서 'id'와 'text'를 추출합니다. token_id = token_entry.get('id', None) token_text = token_entry.get('text', None) # time.sleep으로 글자 속도 조절하며 글자 내보냄 if token_text: # 이 부분은 원하는 대로 조정할 수 있습니다. # partial_message = partial_message + token_text for char in token_text: # 문자 하나씩 순회 (추가됨) partial_message += char # partial_message에 문자 추가 (변경됨) yield partial_message time.sleep(0.01) else: # gr.Warning(f"The key 'text' does not exist or is None in this token entry: {token_entry}") print(f"[[워닝]] ==> The key 'text' does not exist or is None in this token entry: {token_entry}") except KeyError as e: gr.Warning(f"KeyError: {e} occurred for token entry: {token_entry}") continue # 타이틀/설명/질문예시 title = "llama-2 모델 관련 논문 QA 서비스" description = """chat history 유지 보다는 QA에 충실하도록 제작되었으니 Single turn으로 활용을 하여 주세요. (chat history 활용은 다른 주제로 별도 제작 예정)""" css = """.toast-wrap { display: none !important } """ examples=[['Can you tell me about the llama-2 model?'],['What is percent accuracy, using the SPP layer as features on the SPP (ZF-5) model?'], ['What is percent accuracy, using the SPP layer as features on the SPP (ZF-5) model?'], ["tell me about method for human pose estimation based on DNNs"]] # 좋아요 import gradio as gr def vote(data: gr.LikeData): if data.liked: print("You upvoted this response: " + data.value) else: print("You downvoted this response: " + data.value) # 그라디오 (인자 조절) additional_inputs = [ # gr.Textbox("", label="Optional system prompt"), gr.Slider(label="Temperature", value=0.9, minimum=0.0, maximum=1.0, step=0.05, interactive=True, info="Higher values produce more diverse outputs"), gr.Slider(label="Max new tokens", value=256, minimum=0, maximum=4096, step=64, interactive=True, info="The maximum numbers of new tokens"), gr.Slider(label="Top-p (nucleus sampling)", value=0.6, minimum=0.0, maximum=1, step=0.05, interactive=True, info="Higher values sample more low-probability tokens"), gr.Slider(label="Repetition penalty", value=1.2, minimum=1.0, maximum=2.0, step=0.05, interactive=True, info="Penalize repeated tokens") ] chatbot_stream = gr.Chatbot(avatar_images=( "https://drive.google.com/uc?id=13rYrN0cH_9tR7GveqO1q2JiyBCqkfCLZ", # https://drive.google.com/uc?id= 뒤에 ID값만 (모두 사용자 액세스 권한 허용) "https://drive.google.com/uc?id=1tfELAQW_VbPCy6QTRbexRlwAEYo8rSSv" ), bubble_full_width = False) chat_interface_stream = gr.ChatInterface(predict, title=title, description=description, # textbox=gr.Textbox(lines=5), chatbot=chatbot_stream, css=css, examples=examples, # cache_examples=True, # additional_inputs=additional_inputs, ) # Gradio Demo with gr.Blocks() as demo: with gr.Tab("스트리밍"): #gr.ChatInterface(predict, title=title, description=description, css=css, examples=examples, cache_examples=True, additional_inputs=additional_inputs,) chatbot_stream.like(vote, None, None) chat_interface_stream.render() demo.queue(concurrency_count=75, max_size=100).launch(debug=True)