Spaces:
Running
on
Zero
Running
on
Zero
Create app.py
Browse files
app.py
ADDED
@@ -0,0 +1,108 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import os
|
2 |
+
import torch
|
3 |
+
import gradio as gr
|
4 |
+
import numpy as np
|
5 |
+
from PIL import Image
|
6 |
+
from einops import rearrange
|
7 |
+
import requests
|
8 |
+
import spaces
|
9 |
+
from huggingface_hub import login
|
10 |
+
|
11 |
+
hf_token = os.getenv("HF_TOKEN")
|
12 |
+
# Login to Hugging Face
|
13 |
+
login(token=hf_token)
|
14 |
+
|
15 |
+
from image_datasets.canny_dataset import canny_processor, c_crop
|
16 |
+
from src.flux.sampling import denoise_controlnet, get_noise, get_schedule, prepare, unpack
|
17 |
+
from src.flux.util import load_ae, load_clip, load_t5, load_flow_model, load_controlnet, load_safetensors
|
18 |
+
|
19 |
+
# Download and load the ControlNet model
|
20 |
+
model_url = "https://huggingface.co/XLabs-AI/flux-controlnet-canny/resolve/main/controlnet.safetensors?download=true"
|
21 |
+
model_path = "./controlnet.safetensors"
|
22 |
+
if not os.path.exists(model_path):
|
23 |
+
response = requests.get(model_url)
|
24 |
+
with open(model_path, 'wb') as f:
|
25 |
+
f.write(response.content)
|
26 |
+
|
27 |
+
# https://github.com/XLabs-AI/x-flux.git
|
28 |
+
name = "flux-dev"
|
29 |
+
device = torch.device("cuda")
|
30 |
+
offload = False
|
31 |
+
is_schnell = name == "flux-schnell"
|
32 |
+
|
33 |
+
model, ae, t5, clip, controlnet = None, None, None, None, None
|
34 |
+
|
35 |
+
def load_models():
|
36 |
+
global model, ae, t5, clip, controlnet
|
37 |
+
t5 = load_t5(device, max_length=256 if is_schnell else 512)
|
38 |
+
clip = load_clip(device)
|
39 |
+
model = load_flow_model(name, device=device)
|
40 |
+
ae = load_ae(name, device=device)
|
41 |
+
controlnet = load_controlnet(name, device).to(device).to(torch.bfloat16)
|
42 |
+
|
43 |
+
checkpoint = load_safetensors(model_path)
|
44 |
+
controlnet.load_state_dict(checkpoint, strict=False)
|
45 |
+
|
46 |
+
load_models()
|
47 |
+
|
48 |
+
def preprocess_canny_image(image, width=1024, height=1024):
|
49 |
+
image = c_crop(image)
|
50 |
+
image = image.resize((width, height))
|
51 |
+
image = canny_processor(image)
|
52 |
+
return image
|
53 |
+
|
54 |
+
@spaces.GPU()
|
55 |
+
def generate_image(prompt, control_image, num_steps=50, guidance=4, width=512, height=512, seed=42):
|
56 |
+
if not os.path.isdir("./controlnet_results/"):
|
57 |
+
os.makedirs("./controlnet_results/")
|
58 |
+
|
59 |
+
torch_device = torch.device("cuda")
|
60 |
+
|
61 |
+
model.to(torch_device)
|
62 |
+
t5.to(torch_device)
|
63 |
+
clip.to(torch_device)
|
64 |
+
ae.to(torch_device)
|
65 |
+
controlnet.to(torch_device)
|
66 |
+
|
67 |
+
width = 16 * width // 16
|
68 |
+
height = 16 * height // 16
|
69 |
+
timesteps = get_schedule(num_steps, (width // 8) * (height // 8) // (16 * 16), shift=(not is_schnell))
|
70 |
+
|
71 |
+
canny_processed = preprocess_canny_image(control_image, width, height)
|
72 |
+
controlnet_cond = torch.from_numpy((np.array(canny_processed) / 127.5) - 1)
|
73 |
+
controlnet_cond = controlnet_cond.permute(2, 0, 1).unsqueeze(0).to(torch.bfloat16).to(torch_device)
|
74 |
+
|
75 |
+
torch.manual_seed(seed)
|
76 |
+
with torch.no_grad():
|
77 |
+
x = get_noise(1, height, width, device=torch_device, dtype=torch.bfloat16, seed=seed)
|
78 |
+
inp_cond = prepare(t5=t5, clip=clip, img=x, prompt=prompt)
|
79 |
+
|
80 |
+
x = denoise_controlnet(model, **inp_cond, controlnet=controlnet, timesteps=timesteps, guidance=guidance, controlnet_cond=controlnet_cond)
|
81 |
+
|
82 |
+
x = unpack(x.float(), height, width)
|
83 |
+
x = ae.decode(x)
|
84 |
+
|
85 |
+
x1 = x.clamp(-1, 1)
|
86 |
+
x1 = rearrange(x1[-1], "c h w -> h w c")
|
87 |
+
output_img = Image.fromarray((127.5 * (x1 + 1.0)).cpu().byte().numpy())
|
88 |
+
|
89 |
+
return output_img
|
90 |
+
|
91 |
+
interface = gr.Interface(
|
92 |
+
fn=generate_image,
|
93 |
+
inputs=[
|
94 |
+
gr.Textbox(label="Prompt"),
|
95 |
+
gr.Image(type="pil", label="Control Image"),
|
96 |
+
gr.Slider(step=1, minimum=1, maximum=64, value=28, label="Num Steps"),
|
97 |
+
gr.Slider(minimum=0.1, maximum=10, value=4, label="Guidance"),
|
98 |
+
gr.Slider(minimum=128, maximum=2048, step=128, value=1024, label="Width"),
|
99 |
+
gr.Slider(minimum=128, maximum=2048, step=128, value=1024, label="Height"),
|
100 |
+
gr.Number(value=42, label="Seed")
|
101 |
+
],
|
102 |
+
outputs=gr.Image(type="pil", label="Generated Image"),
|
103 |
+
title="FLUX.1 Controlnet Cany",
|
104 |
+
description="Generate images using ControlNet and a text prompt.\n[[non-commercial license, Flux.1 Dev](https://huggingface.co/black-forest-labs/FLUX.1-dev/blob/main/LICENSE.md)]"
|
105 |
+
)
|
106 |
+
|
107 |
+
if __name__ == "__main__":
|
108 |
+
interface.launch()
|