Spaces:
Running
on
Zero
Running
on
Zero
Upload 3 files
Browse files- src/flux/modules/autoencoder.py +312 -0
- src/flux/modules/conditioner.py +38 -0
- src/flux/modules/layers.py +355 -0
src/flux/modules/autoencoder.py
ADDED
@@ -0,0 +1,312 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from dataclasses import dataclass
|
2 |
+
|
3 |
+
import torch
|
4 |
+
from einops import rearrange
|
5 |
+
from torch import Tensor, nn
|
6 |
+
|
7 |
+
|
8 |
+
@dataclass
|
9 |
+
class AutoEncoderParams:
|
10 |
+
resolution: int
|
11 |
+
in_channels: int
|
12 |
+
ch: int
|
13 |
+
out_ch: int
|
14 |
+
ch_mult: list[int]
|
15 |
+
num_res_blocks: int
|
16 |
+
z_channels: int
|
17 |
+
scale_factor: float
|
18 |
+
shift_factor: float
|
19 |
+
|
20 |
+
|
21 |
+
def swish(x: Tensor) -> Tensor:
|
22 |
+
return x * torch.sigmoid(x)
|
23 |
+
|
24 |
+
|
25 |
+
class AttnBlock(nn.Module):
|
26 |
+
def __init__(self, in_channels: int):
|
27 |
+
super().__init__()
|
28 |
+
self.in_channels = in_channels
|
29 |
+
|
30 |
+
self.norm = nn.GroupNorm(num_groups=32, num_channels=in_channels, eps=1e-6, affine=True)
|
31 |
+
|
32 |
+
self.q = nn.Conv2d(in_channels, in_channels, kernel_size=1)
|
33 |
+
self.k = nn.Conv2d(in_channels, in_channels, kernel_size=1)
|
34 |
+
self.v = nn.Conv2d(in_channels, in_channels, kernel_size=1)
|
35 |
+
self.proj_out = nn.Conv2d(in_channels, in_channels, kernel_size=1)
|
36 |
+
|
37 |
+
def attention(self, h_: Tensor) -> Tensor:
|
38 |
+
h_ = self.norm(h_)
|
39 |
+
q = self.q(h_)
|
40 |
+
k = self.k(h_)
|
41 |
+
v = self.v(h_)
|
42 |
+
|
43 |
+
b, c, h, w = q.shape
|
44 |
+
q = rearrange(q, "b c h w -> b 1 (h w) c").contiguous()
|
45 |
+
k = rearrange(k, "b c h w -> b 1 (h w) c").contiguous()
|
46 |
+
v = rearrange(v, "b c h w -> b 1 (h w) c").contiguous()
|
47 |
+
h_ = nn.functional.scaled_dot_product_attention(q, k, v)
|
48 |
+
|
49 |
+
return rearrange(h_, "b 1 (h w) c -> b c h w", h=h, w=w, c=c, b=b)
|
50 |
+
|
51 |
+
def forward(self, x: Tensor) -> Tensor:
|
52 |
+
return x + self.proj_out(self.attention(x))
|
53 |
+
|
54 |
+
|
55 |
+
class ResnetBlock(nn.Module):
|
56 |
+
def __init__(self, in_channels: int, out_channels: int):
|
57 |
+
super().__init__()
|
58 |
+
self.in_channels = in_channels
|
59 |
+
out_channels = in_channels if out_channels is None else out_channels
|
60 |
+
self.out_channels = out_channels
|
61 |
+
|
62 |
+
self.norm1 = nn.GroupNorm(num_groups=32, num_channels=in_channels, eps=1e-6, affine=True)
|
63 |
+
self.conv1 = nn.Conv2d(in_channels, out_channels, kernel_size=3, stride=1, padding=1)
|
64 |
+
self.norm2 = nn.GroupNorm(num_groups=32, num_channels=out_channels, eps=1e-6, affine=True)
|
65 |
+
self.conv2 = nn.Conv2d(out_channels, out_channels, kernel_size=3, stride=1, padding=1)
|
66 |
+
if self.in_channels != self.out_channels:
|
67 |
+
self.nin_shortcut = nn.Conv2d(in_channels, out_channels, kernel_size=1, stride=1, padding=0)
|
68 |
+
|
69 |
+
def forward(self, x):
|
70 |
+
h = x
|
71 |
+
h = self.norm1(h)
|
72 |
+
h = swish(h)
|
73 |
+
h = self.conv1(h)
|
74 |
+
|
75 |
+
h = self.norm2(h)
|
76 |
+
h = swish(h)
|
77 |
+
h = self.conv2(h)
|
78 |
+
|
79 |
+
if self.in_channels != self.out_channels:
|
80 |
+
x = self.nin_shortcut(x)
|
81 |
+
|
82 |
+
return x + h
|
83 |
+
|
84 |
+
|
85 |
+
class Downsample(nn.Module):
|
86 |
+
def __init__(self, in_channels: int):
|
87 |
+
super().__init__()
|
88 |
+
# no asymmetric padding in torch conv, must do it ourselves
|
89 |
+
self.conv = nn.Conv2d(in_channels, in_channels, kernel_size=3, stride=2, padding=0)
|
90 |
+
|
91 |
+
def forward(self, x: Tensor):
|
92 |
+
pad = (0, 1, 0, 1)
|
93 |
+
x = nn.functional.pad(x, pad, mode="constant", value=0)
|
94 |
+
x = self.conv(x)
|
95 |
+
return x
|
96 |
+
|
97 |
+
|
98 |
+
class Upsample(nn.Module):
|
99 |
+
def __init__(self, in_channels: int):
|
100 |
+
super().__init__()
|
101 |
+
self.conv = nn.Conv2d(in_channels, in_channels, kernel_size=3, stride=1, padding=1)
|
102 |
+
|
103 |
+
def forward(self, x: Tensor):
|
104 |
+
x = nn.functional.interpolate(x, scale_factor=2.0, mode="nearest")
|
105 |
+
x = self.conv(x)
|
106 |
+
return x
|
107 |
+
|
108 |
+
|
109 |
+
class Encoder(nn.Module):
|
110 |
+
def __init__(
|
111 |
+
self,
|
112 |
+
resolution: int,
|
113 |
+
in_channels: int,
|
114 |
+
ch: int,
|
115 |
+
ch_mult: list[int],
|
116 |
+
num_res_blocks: int,
|
117 |
+
z_channels: int,
|
118 |
+
):
|
119 |
+
super().__init__()
|
120 |
+
self.ch = ch
|
121 |
+
self.num_resolutions = len(ch_mult)
|
122 |
+
self.num_res_blocks = num_res_blocks
|
123 |
+
self.resolution = resolution
|
124 |
+
self.in_channels = in_channels
|
125 |
+
# downsampling
|
126 |
+
self.conv_in = nn.Conv2d(in_channels, self.ch, kernel_size=3, stride=1, padding=1)
|
127 |
+
|
128 |
+
curr_res = resolution
|
129 |
+
in_ch_mult = (1,) + tuple(ch_mult)
|
130 |
+
self.in_ch_mult = in_ch_mult
|
131 |
+
self.down = nn.ModuleList()
|
132 |
+
block_in = self.ch
|
133 |
+
for i_level in range(self.num_resolutions):
|
134 |
+
block = nn.ModuleList()
|
135 |
+
attn = nn.ModuleList()
|
136 |
+
block_in = ch * in_ch_mult[i_level]
|
137 |
+
block_out = ch * ch_mult[i_level]
|
138 |
+
for _ in range(self.num_res_blocks):
|
139 |
+
block.append(ResnetBlock(in_channels=block_in, out_channels=block_out))
|
140 |
+
block_in = block_out
|
141 |
+
down = nn.Module()
|
142 |
+
down.block = block
|
143 |
+
down.attn = attn
|
144 |
+
if i_level != self.num_resolutions - 1:
|
145 |
+
down.downsample = Downsample(block_in)
|
146 |
+
curr_res = curr_res // 2
|
147 |
+
self.down.append(down)
|
148 |
+
|
149 |
+
# middle
|
150 |
+
self.mid = nn.Module()
|
151 |
+
self.mid.block_1 = ResnetBlock(in_channels=block_in, out_channels=block_in)
|
152 |
+
self.mid.attn_1 = AttnBlock(block_in)
|
153 |
+
self.mid.block_2 = ResnetBlock(in_channels=block_in, out_channels=block_in)
|
154 |
+
|
155 |
+
# end
|
156 |
+
self.norm_out = nn.GroupNorm(num_groups=32, num_channels=block_in, eps=1e-6, affine=True)
|
157 |
+
self.conv_out = nn.Conv2d(block_in, 2 * z_channels, kernel_size=3, stride=1, padding=1)
|
158 |
+
|
159 |
+
def forward(self, x: Tensor) -> Tensor:
|
160 |
+
# downsampling
|
161 |
+
hs = [self.conv_in(x)]
|
162 |
+
for i_level in range(self.num_resolutions):
|
163 |
+
for i_block in range(self.num_res_blocks):
|
164 |
+
h = self.down[i_level].block[i_block](hs[-1])
|
165 |
+
if len(self.down[i_level].attn) > 0:
|
166 |
+
h = self.down[i_level].attn[i_block](h)
|
167 |
+
hs.append(h)
|
168 |
+
if i_level != self.num_resolutions - 1:
|
169 |
+
hs.append(self.down[i_level].downsample(hs[-1]))
|
170 |
+
|
171 |
+
# middle
|
172 |
+
h = hs[-1]
|
173 |
+
h = self.mid.block_1(h)
|
174 |
+
h = self.mid.attn_1(h)
|
175 |
+
h = self.mid.block_2(h)
|
176 |
+
# end
|
177 |
+
h = self.norm_out(h)
|
178 |
+
h = swish(h)
|
179 |
+
h = self.conv_out(h)
|
180 |
+
return h
|
181 |
+
|
182 |
+
|
183 |
+
class Decoder(nn.Module):
|
184 |
+
def __init__(
|
185 |
+
self,
|
186 |
+
ch: int,
|
187 |
+
out_ch: int,
|
188 |
+
ch_mult: list[int],
|
189 |
+
num_res_blocks: int,
|
190 |
+
in_channels: int,
|
191 |
+
resolution: int,
|
192 |
+
z_channels: int,
|
193 |
+
):
|
194 |
+
super().__init__()
|
195 |
+
self.ch = ch
|
196 |
+
self.num_resolutions = len(ch_mult)
|
197 |
+
self.num_res_blocks = num_res_blocks
|
198 |
+
self.resolution = resolution
|
199 |
+
self.in_channels = in_channels
|
200 |
+
self.ffactor = 2 ** (self.num_resolutions - 1)
|
201 |
+
|
202 |
+
# compute in_ch_mult, block_in and curr_res at lowest res
|
203 |
+
block_in = ch * ch_mult[self.num_resolutions - 1]
|
204 |
+
curr_res = resolution // 2 ** (self.num_resolutions - 1)
|
205 |
+
self.z_shape = (1, z_channels, curr_res, curr_res)
|
206 |
+
|
207 |
+
# z to block_in
|
208 |
+
self.conv_in = nn.Conv2d(z_channels, block_in, kernel_size=3, stride=1, padding=1)
|
209 |
+
|
210 |
+
# middle
|
211 |
+
self.mid = nn.Module()
|
212 |
+
self.mid.block_1 = ResnetBlock(in_channels=block_in, out_channels=block_in)
|
213 |
+
self.mid.attn_1 = AttnBlock(block_in)
|
214 |
+
self.mid.block_2 = ResnetBlock(in_channels=block_in, out_channels=block_in)
|
215 |
+
|
216 |
+
# upsampling
|
217 |
+
self.up = nn.ModuleList()
|
218 |
+
for i_level in reversed(range(self.num_resolutions)):
|
219 |
+
block = nn.ModuleList()
|
220 |
+
attn = nn.ModuleList()
|
221 |
+
block_out = ch * ch_mult[i_level]
|
222 |
+
for _ in range(self.num_res_blocks + 1):
|
223 |
+
block.append(ResnetBlock(in_channels=block_in, out_channels=block_out))
|
224 |
+
block_in = block_out
|
225 |
+
up = nn.Module()
|
226 |
+
up.block = block
|
227 |
+
up.attn = attn
|
228 |
+
if i_level != 0:
|
229 |
+
up.upsample = Upsample(block_in)
|
230 |
+
curr_res = curr_res * 2
|
231 |
+
self.up.insert(0, up) # prepend to get consistent order
|
232 |
+
|
233 |
+
# end
|
234 |
+
self.norm_out = nn.GroupNorm(num_groups=32, num_channels=block_in, eps=1e-6, affine=True)
|
235 |
+
self.conv_out = nn.Conv2d(block_in, out_ch, kernel_size=3, stride=1, padding=1)
|
236 |
+
|
237 |
+
def forward(self, z: Tensor) -> Tensor:
|
238 |
+
# z to block_in
|
239 |
+
h = self.conv_in(z)
|
240 |
+
|
241 |
+
# middle
|
242 |
+
h = self.mid.block_1(h)
|
243 |
+
h = self.mid.attn_1(h)
|
244 |
+
h = self.mid.block_2(h)
|
245 |
+
|
246 |
+
# upsampling
|
247 |
+
for i_level in reversed(range(self.num_resolutions)):
|
248 |
+
for i_block in range(self.num_res_blocks + 1):
|
249 |
+
h = self.up[i_level].block[i_block](h)
|
250 |
+
if len(self.up[i_level].attn) > 0:
|
251 |
+
h = self.up[i_level].attn[i_block](h)
|
252 |
+
if i_level != 0:
|
253 |
+
h = self.up[i_level].upsample(h)
|
254 |
+
|
255 |
+
# end
|
256 |
+
h = self.norm_out(h)
|
257 |
+
h = swish(h)
|
258 |
+
h = self.conv_out(h)
|
259 |
+
return h
|
260 |
+
|
261 |
+
|
262 |
+
class DiagonalGaussian(nn.Module):
|
263 |
+
def __init__(self, sample: bool = True, chunk_dim: int = 1):
|
264 |
+
super().__init__()
|
265 |
+
self.sample = sample
|
266 |
+
self.chunk_dim = chunk_dim
|
267 |
+
|
268 |
+
def forward(self, z: Tensor) -> Tensor:
|
269 |
+
mean, logvar = torch.chunk(z, 2, dim=self.chunk_dim)
|
270 |
+
if self.sample:
|
271 |
+
std = torch.exp(0.5 * logvar)
|
272 |
+
return mean + std * torch.randn_like(mean)
|
273 |
+
else:
|
274 |
+
return mean
|
275 |
+
|
276 |
+
|
277 |
+
class AutoEncoder(nn.Module):
|
278 |
+
def __init__(self, params: AutoEncoderParams):
|
279 |
+
super().__init__()
|
280 |
+
self.encoder = Encoder(
|
281 |
+
resolution=params.resolution,
|
282 |
+
in_channels=params.in_channels,
|
283 |
+
ch=params.ch,
|
284 |
+
ch_mult=params.ch_mult,
|
285 |
+
num_res_blocks=params.num_res_blocks,
|
286 |
+
z_channels=params.z_channels,
|
287 |
+
)
|
288 |
+
self.decoder = Decoder(
|
289 |
+
resolution=params.resolution,
|
290 |
+
in_channels=params.in_channels,
|
291 |
+
ch=params.ch,
|
292 |
+
out_ch=params.out_ch,
|
293 |
+
ch_mult=params.ch_mult,
|
294 |
+
num_res_blocks=params.num_res_blocks,
|
295 |
+
z_channels=params.z_channels,
|
296 |
+
)
|
297 |
+
self.reg = DiagonalGaussian()
|
298 |
+
|
299 |
+
self.scale_factor = params.scale_factor
|
300 |
+
self.shift_factor = params.shift_factor
|
301 |
+
|
302 |
+
def encode(self, x: Tensor) -> Tensor:
|
303 |
+
z = self.reg(self.encoder(x))
|
304 |
+
z = self.scale_factor * (z - self.shift_factor)
|
305 |
+
return z
|
306 |
+
|
307 |
+
def decode(self, z: Tensor) -> Tensor:
|
308 |
+
z = z / self.scale_factor + self.shift_factor
|
309 |
+
return self.decoder(z)
|
310 |
+
|
311 |
+
def forward(self, x: Tensor) -> Tensor:
|
312 |
+
return self.decode(self.encode(x))
|
src/flux/modules/conditioner.py
ADDED
@@ -0,0 +1,38 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from torch import Tensor, nn
|
2 |
+
from transformers import (CLIPTextModel, CLIPTokenizer, T5EncoderModel,
|
3 |
+
T5Tokenizer)
|
4 |
+
|
5 |
+
|
6 |
+
class HFEmbedder(nn.Module):
|
7 |
+
def __init__(self, version: str, max_length: int, **hf_kwargs):
|
8 |
+
super().__init__()
|
9 |
+
self.is_clip = version.startswith("openai")
|
10 |
+
self.max_length = max_length
|
11 |
+
self.output_key = "pooler_output" if self.is_clip else "last_hidden_state"
|
12 |
+
|
13 |
+
if self.is_clip:
|
14 |
+
self.tokenizer: CLIPTokenizer = CLIPTokenizer.from_pretrained(version, max_length=max_length)
|
15 |
+
self.hf_module: CLIPTextModel = CLIPTextModel.from_pretrained(version, **hf_kwargs)
|
16 |
+
else:
|
17 |
+
self.tokenizer: T5Tokenizer = T5Tokenizer.from_pretrained(version, max_length=max_length)
|
18 |
+
self.hf_module: T5EncoderModel = T5EncoderModel.from_pretrained(version, **hf_kwargs)
|
19 |
+
|
20 |
+
self.hf_module = self.hf_module.eval().requires_grad_(False)
|
21 |
+
|
22 |
+
def forward(self, text: list[str]) -> Tensor:
|
23 |
+
batch_encoding = self.tokenizer(
|
24 |
+
text,
|
25 |
+
truncation=True,
|
26 |
+
max_length=self.max_length,
|
27 |
+
return_length=False,
|
28 |
+
return_overflowing_tokens=False,
|
29 |
+
padding="max_length",
|
30 |
+
return_tensors="pt",
|
31 |
+
)
|
32 |
+
|
33 |
+
outputs = self.hf_module(
|
34 |
+
input_ids=batch_encoding["input_ids"].to(self.hf_module.device),
|
35 |
+
attention_mask=None,
|
36 |
+
output_hidden_states=False,
|
37 |
+
)
|
38 |
+
return outputs[self.output_key]
|
src/flux/modules/layers.py
ADDED
@@ -0,0 +1,355 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import math
|
2 |
+
from dataclasses import dataclass
|
3 |
+
|
4 |
+
import torch
|
5 |
+
from einops import rearrange
|
6 |
+
from torch import Tensor, nn
|
7 |
+
|
8 |
+
from ..math import attention, rope
|
9 |
+
|
10 |
+
|
11 |
+
class EmbedND(nn.Module):
|
12 |
+
def __init__(self, dim: int, theta: int, axes_dim: list[int]):
|
13 |
+
super().__init__()
|
14 |
+
self.dim = dim
|
15 |
+
self.theta = theta
|
16 |
+
self.axes_dim = axes_dim
|
17 |
+
|
18 |
+
def forward(self, ids: Tensor) -> Tensor:
|
19 |
+
n_axes = ids.shape[-1]
|
20 |
+
emb = torch.cat(
|
21 |
+
[rope(ids[..., i], self.axes_dim[i], self.theta) for i in range(n_axes)],
|
22 |
+
dim=-3,
|
23 |
+
)
|
24 |
+
|
25 |
+
return emb.unsqueeze(1)
|
26 |
+
|
27 |
+
|
28 |
+
def timestep_embedding(t: Tensor, dim, max_period=10000, time_factor: float = 1000.0):
|
29 |
+
"""
|
30 |
+
Create sinusoidal timestep embeddings.
|
31 |
+
:param t: a 1-D Tensor of N indices, one per batch element.
|
32 |
+
These may be fractional.
|
33 |
+
:param dim: the dimension of the output.
|
34 |
+
:param max_period: controls the minimum frequency of the embeddings.
|
35 |
+
:return: an (N, D) Tensor of positional embeddings.
|
36 |
+
"""
|
37 |
+
t = time_factor * t
|
38 |
+
half = dim // 2
|
39 |
+
freqs = torch.exp(-math.log(max_period) * torch.arange(start=0, end=half, dtype=torch.float32) / half).to(
|
40 |
+
t.device
|
41 |
+
)
|
42 |
+
|
43 |
+
args = t[:, None].float() * freqs[None]
|
44 |
+
embedding = torch.cat([torch.cos(args), torch.sin(args)], dim=-1)
|
45 |
+
if dim % 2:
|
46 |
+
embedding = torch.cat([embedding, torch.zeros_like(embedding[:, :1])], dim=-1)
|
47 |
+
if torch.is_floating_point(t):
|
48 |
+
embedding = embedding.to(t)
|
49 |
+
return embedding
|
50 |
+
|
51 |
+
|
52 |
+
class MLPEmbedder(nn.Module):
|
53 |
+
def __init__(self, in_dim: int, hidden_dim: int):
|
54 |
+
super().__init__()
|
55 |
+
self.in_layer = nn.Linear(in_dim, hidden_dim, bias=True)
|
56 |
+
self.silu = nn.SiLU()
|
57 |
+
self.out_layer = nn.Linear(hidden_dim, hidden_dim, bias=True)
|
58 |
+
|
59 |
+
def forward(self, x: Tensor) -> Tensor:
|
60 |
+
return self.out_layer(self.silu(self.in_layer(x)))
|
61 |
+
|
62 |
+
|
63 |
+
class RMSNorm(torch.nn.Module):
|
64 |
+
def __init__(self, dim: int):
|
65 |
+
super().__init__()
|
66 |
+
self.scale = nn.Parameter(torch.ones(dim))
|
67 |
+
|
68 |
+
def forward(self, x: Tensor):
|
69 |
+
x_dtype = x.dtype
|
70 |
+
x = x.float()
|
71 |
+
rrms = torch.rsqrt(torch.mean(x**2, dim=-1, keepdim=True) + 1e-6)
|
72 |
+
return (x * rrms).to(dtype=x_dtype) * self.scale
|
73 |
+
|
74 |
+
|
75 |
+
class QKNorm(torch.nn.Module):
|
76 |
+
def __init__(self, dim: int):
|
77 |
+
super().__init__()
|
78 |
+
self.query_norm = RMSNorm(dim)
|
79 |
+
self.key_norm = RMSNorm(dim)
|
80 |
+
|
81 |
+
def forward(self, q: Tensor, k: Tensor, v: Tensor) -> tuple[Tensor, Tensor]:
|
82 |
+
q = self.query_norm(q)
|
83 |
+
k = self.key_norm(k)
|
84 |
+
return q.to(v), k.to(v)
|
85 |
+
|
86 |
+
class LoRALinearLayer(nn.Module):
|
87 |
+
def __init__(self, in_features, out_features, rank=4, network_alpha=None, device=None, dtype=None):
|
88 |
+
super().__init__()
|
89 |
+
|
90 |
+
self.down = nn.Linear(in_features, rank, bias=False, device=device, dtype=dtype)
|
91 |
+
self.up = nn.Linear(rank, out_features, bias=False, device=device, dtype=dtype)
|
92 |
+
# This value has the same meaning as the `--network_alpha` option in the kohya-ss trainer script.
|
93 |
+
# See https://github.com/darkstorm2150/sd-scripts/blob/main/docs/train_network_README-en.md#execute-learning
|
94 |
+
self.network_alpha = network_alpha
|
95 |
+
self.rank = rank
|
96 |
+
|
97 |
+
nn.init.normal_(self.down.weight, std=1 / rank)
|
98 |
+
nn.init.zeros_(self.up.weight)
|
99 |
+
|
100 |
+
def forward(self, hidden_states):
|
101 |
+
orig_dtype = hidden_states.dtype
|
102 |
+
dtype = self.down.weight.dtype
|
103 |
+
|
104 |
+
down_hidden_states = self.down(hidden_states.to(dtype))
|
105 |
+
up_hidden_states = self.up(down_hidden_states)
|
106 |
+
|
107 |
+
if self.network_alpha is not None:
|
108 |
+
up_hidden_states *= self.network_alpha / self.rank
|
109 |
+
|
110 |
+
return up_hidden_states.to(orig_dtype)
|
111 |
+
|
112 |
+
class FLuxSelfAttnProcessor:
|
113 |
+
def __call__(self, attn, x, pe, **attention_kwargs):
|
114 |
+
print('2' * 30)
|
115 |
+
|
116 |
+
qkv = attn.qkv(x)
|
117 |
+
q, k, v = rearrange(qkv, "B L (K H D) -> K B H L D", K=3, H=self.num_heads)
|
118 |
+
q, k = attn.norm(q, k, v)
|
119 |
+
x = attention(q, k, v, pe=pe)
|
120 |
+
x = attn.proj(x)
|
121 |
+
return x
|
122 |
+
|
123 |
+
class LoraFluxAttnProcessor(nn.Module):
|
124 |
+
|
125 |
+
def __init__(self, dim: int, rank=4, network_alpha=None, lora_weight=1):
|
126 |
+
super().__init__()
|
127 |
+
self.qkv_lora = LoRALinearLayer(dim, dim * 3, rank, network_alpha)
|
128 |
+
self.proj_lora = LoRALinearLayer(dim, dim, rank, network_alpha)
|
129 |
+
self.lora_weight = lora_weight
|
130 |
+
|
131 |
+
|
132 |
+
def __call__(self, attn, x, pe, **attention_kwargs):
|
133 |
+
qkv = attn.qkv(x) + self.qkv_lora(x) * self.lora_weight
|
134 |
+
q, k, v = rearrange(qkv, "B L (K H D) -> K B H L D", K=3, H=self.num_heads)
|
135 |
+
q, k = attn.norm(q, k, v)
|
136 |
+
x = attention(q, k, v, pe=pe)
|
137 |
+
x = attn.proj(x) + self.proj_lora(x) * self.lora_weight
|
138 |
+
print('1' * 30)
|
139 |
+
print(x.norm(), (self.proj_lora(x) * self.lora_weight).norm(), 'norm')
|
140 |
+
return x
|
141 |
+
|
142 |
+
class SelfAttention(nn.Module):
|
143 |
+
def __init__(self, dim: int, num_heads: int = 8, qkv_bias: bool = False):
|
144 |
+
super().__init__()
|
145 |
+
self.num_heads = num_heads
|
146 |
+
head_dim = dim // num_heads
|
147 |
+
|
148 |
+
self.qkv = nn.Linear(dim, dim * 3, bias=qkv_bias)
|
149 |
+
self.norm = QKNorm(head_dim)
|
150 |
+
self.proj = nn.Linear(dim, dim)
|
151 |
+
def forward():
|
152 |
+
pass
|
153 |
+
|
154 |
+
|
155 |
+
@dataclass
|
156 |
+
class ModulationOut:
|
157 |
+
shift: Tensor
|
158 |
+
scale: Tensor
|
159 |
+
gate: Tensor
|
160 |
+
|
161 |
+
|
162 |
+
class Modulation(nn.Module):
|
163 |
+
def __init__(self, dim: int, double: bool):
|
164 |
+
super().__init__()
|
165 |
+
self.is_double = double
|
166 |
+
self.multiplier = 6 if double else 3
|
167 |
+
self.lin = nn.Linear(dim, self.multiplier * dim, bias=True)
|
168 |
+
|
169 |
+
def forward(self, vec: Tensor) -> tuple[ModulationOut, ModulationOut | None]:
|
170 |
+
out = self.lin(nn.functional.silu(vec))[:, None, :].chunk(self.multiplier, dim=-1)
|
171 |
+
|
172 |
+
return (
|
173 |
+
ModulationOut(*out[:3]),
|
174 |
+
ModulationOut(*out[3:]) if self.is_double else None,
|
175 |
+
)
|
176 |
+
|
177 |
+
class DoubleStreamBlockLoraProcessor(nn.Module):
|
178 |
+
def __init__(self, dim: int, rank=4, network_alpha=None, lora_weight=1):
|
179 |
+
super().__init__()
|
180 |
+
self.qkv_lora1 = LoRALinearLayer(dim, dim * 3, rank, network_alpha)
|
181 |
+
self.proj_lora1 = LoRALinearLayer(dim, dim, rank, network_alpha)
|
182 |
+
self.qkv_lora2 = LoRALinearLayer(dim, dim * 3, rank, network_alpha)
|
183 |
+
self.proj_lora2 = LoRALinearLayer(dim, dim, rank, network_alpha)
|
184 |
+
self.lora_weight = lora_weight
|
185 |
+
|
186 |
+
def forward(self, attn, img, txt, vec, pe, **attention_kwargs):
|
187 |
+
img_mod1, img_mod2 = attn.img_mod(vec)
|
188 |
+
txt_mod1, txt_mod2 = attn.txt_mod(vec)
|
189 |
+
|
190 |
+
# prepare image for attention
|
191 |
+
img_modulated = attn.img_norm1(img)
|
192 |
+
img_modulated = (1 + img_mod1.scale) * img_modulated + img_mod1.shift
|
193 |
+
img_qkv = attn.img_attn.qkv(img_modulated) + self.qkv_lora1(img_modulated) * self.lora_weight
|
194 |
+
img_q, img_k, img_v = rearrange(img_qkv, "B L (K H D) -> K B H L D", K=3, H=attn.num_heads)
|
195 |
+
img_q, img_k = attn.img_attn.norm(img_q, img_k, img_v)
|
196 |
+
|
197 |
+
# prepare txt for attention
|
198 |
+
txt_modulated = attn.txt_norm1(txt)
|
199 |
+
txt_modulated = (1 + txt_mod1.scale) * txt_modulated + txt_mod1.shift
|
200 |
+
txt_qkv = attn.txt_attn.qkv(txt_modulated) + self.qkv_lora2(txt_modulated) * self.lora_weight
|
201 |
+
txt_q, txt_k, txt_v = rearrange(txt_qkv, "B L (K H D) -> K B H L D", K=3, H=attn.num_heads)
|
202 |
+
txt_q, txt_k = attn.txt_attn.norm(txt_q, txt_k, txt_v)
|
203 |
+
|
204 |
+
# run actual attention
|
205 |
+
q = torch.cat((txt_q, img_q), dim=2)
|
206 |
+
k = torch.cat((txt_k, img_k), dim=2)
|
207 |
+
v = torch.cat((txt_v, img_v), dim=2)
|
208 |
+
|
209 |
+
attn1 = attention(q, k, v, pe=pe)
|
210 |
+
txt_attn, img_attn = attn1[:, : txt.shape[1]], attn1[:, txt.shape[1] :]
|
211 |
+
|
212 |
+
# calculate the img bloks
|
213 |
+
img = img + img_mod1.gate * attn.img_attn.proj(img_attn) + img_mod1.gate * self.proj_lora1(img_attn) * self.lora_weight
|
214 |
+
img = img + img_mod2.gate * attn.img_mlp((1 + img_mod2.scale) * attn.img_norm2(img) + img_mod2.shift)
|
215 |
+
|
216 |
+
# calculate the txt bloks
|
217 |
+
txt = txt + txt_mod1.gate * attn.txt_attn.proj(txt_attn) + txt_mod1.gate * self.proj_lora2(txt_attn) * self.lora_weight
|
218 |
+
txt = txt + txt_mod2.gate * attn.txt_mlp((1 + txt_mod2.scale) * attn.txt_norm2(txt) + txt_mod2.shift)
|
219 |
+
return img, txt
|
220 |
+
|
221 |
+
class DoubleStreamBlockProcessor:
|
222 |
+
def __call__(self, attn, img, txt, vec, pe, **attention_kwargs):
|
223 |
+
img_mod1, img_mod2 = attn.img_mod(vec)
|
224 |
+
txt_mod1, txt_mod2 = attn.txt_mod(vec)
|
225 |
+
|
226 |
+
# prepare image for attention
|
227 |
+
img_modulated = attn.img_norm1(img)
|
228 |
+
img_modulated = (1 + img_mod1.scale) * img_modulated + img_mod1.shift
|
229 |
+
img_qkv = attn.img_attn.qkv(img_modulated)
|
230 |
+
img_q, img_k, img_v = rearrange(img_qkv, "B L (K H D) -> K B H L D", K=3, H=attn.num_heads)
|
231 |
+
img_q, img_k = attn.img_attn.norm(img_q, img_k, img_v)
|
232 |
+
|
233 |
+
# prepare txt for attention
|
234 |
+
txt_modulated = attn.txt_norm1(txt)
|
235 |
+
txt_modulated = (1 + txt_mod1.scale) * txt_modulated + txt_mod1.shift
|
236 |
+
txt_qkv = attn.txt_attn.qkv(txt_modulated)
|
237 |
+
txt_q, txt_k, txt_v = rearrange(txt_qkv, "B L (K H D) -> K B H L D", K=3, H=attn.num_heads)
|
238 |
+
txt_q, txt_k = attn.txt_attn.norm(txt_q, txt_k, txt_v)
|
239 |
+
|
240 |
+
# run actual attention
|
241 |
+
q = torch.cat((txt_q, img_q), dim=2)
|
242 |
+
k = torch.cat((txt_k, img_k), dim=2)
|
243 |
+
v = torch.cat((txt_v, img_v), dim=2)
|
244 |
+
|
245 |
+
attn1 = attention(q, k, v, pe=pe)
|
246 |
+
txt_attn, img_attn = attn1[:, : txt.shape[1]], attn1[:, txt.shape[1] :]
|
247 |
+
|
248 |
+
# calculate the img bloks
|
249 |
+
img = img + img_mod1.gate * attn.img_attn.proj(img_attn)
|
250 |
+
img = img + img_mod2.gate * attn.img_mlp((1 + img_mod2.scale) * attn.img_norm2(img) + img_mod2.shift)
|
251 |
+
|
252 |
+
# calculate the txt bloks
|
253 |
+
txt = txt + txt_mod1.gate * attn.txt_attn.proj(txt_attn)
|
254 |
+
txt = txt + txt_mod2.gate * attn.txt_mlp((1 + txt_mod2.scale) * attn.txt_norm2(txt) + txt_mod2.shift)
|
255 |
+
return img, txt
|
256 |
+
|
257 |
+
class DoubleStreamBlock(nn.Module):
|
258 |
+
def __init__(self, hidden_size: int, num_heads: int, mlp_ratio: float, qkv_bias: bool = False):
|
259 |
+
super().__init__()
|
260 |
+
mlp_hidden_dim = int(hidden_size * mlp_ratio)
|
261 |
+
self.num_heads = num_heads
|
262 |
+
self.hidden_size = hidden_size
|
263 |
+
self.img_mod = Modulation(hidden_size, double=True)
|
264 |
+
self.img_norm1 = nn.LayerNorm(hidden_size, elementwise_affine=False, eps=1e-6)
|
265 |
+
self.img_attn = SelfAttention(dim=hidden_size, num_heads=num_heads, qkv_bias=qkv_bias)
|
266 |
+
|
267 |
+
self.img_norm2 = nn.LayerNorm(hidden_size, elementwise_affine=False, eps=1e-6)
|
268 |
+
self.img_mlp = nn.Sequential(
|
269 |
+
nn.Linear(hidden_size, mlp_hidden_dim, bias=True),
|
270 |
+
nn.GELU(approximate="tanh"),
|
271 |
+
nn.Linear(mlp_hidden_dim, hidden_size, bias=True),
|
272 |
+
)
|
273 |
+
|
274 |
+
self.txt_mod = Modulation(hidden_size, double=True)
|
275 |
+
self.txt_norm1 = nn.LayerNorm(hidden_size, elementwise_affine=False, eps=1e-6)
|
276 |
+
self.txt_attn = SelfAttention(dim=hidden_size, num_heads=num_heads, qkv_bias=qkv_bias)
|
277 |
+
|
278 |
+
self.txt_norm2 = nn.LayerNorm(hidden_size, elementwise_affine=False, eps=1e-6)
|
279 |
+
self.txt_mlp = nn.Sequential(
|
280 |
+
nn.Linear(hidden_size, mlp_hidden_dim, bias=True),
|
281 |
+
nn.GELU(approximate="tanh"),
|
282 |
+
nn.Linear(mlp_hidden_dim, hidden_size, bias=True),
|
283 |
+
)
|
284 |
+
processor = DoubleStreamBlockProcessor()
|
285 |
+
self.set_processor(processor)
|
286 |
+
|
287 |
+
def set_processor(self, processor) -> None:
|
288 |
+
self.processor = processor
|
289 |
+
|
290 |
+
def get_processor(self):
|
291 |
+
return self.processor
|
292 |
+
|
293 |
+
def forward(self, img: Tensor, txt: Tensor, vec: Tensor, pe: Tensor) -> tuple[Tensor, Tensor]:
|
294 |
+
return self.processor(self, img, txt, vec, pe)
|
295 |
+
|
296 |
+
class SingleStreamBlock(nn.Module):
|
297 |
+
"""
|
298 |
+
A DiT block with parallel linear layers as described in
|
299 |
+
https://arxiv.org/abs/2302.05442 and adapted modulation interface.
|
300 |
+
"""
|
301 |
+
|
302 |
+
def __init__(
|
303 |
+
self,
|
304 |
+
hidden_size: int,
|
305 |
+
num_heads: int,
|
306 |
+
mlp_ratio: float = 4.0,
|
307 |
+
qk_scale: float | None = None,
|
308 |
+
):
|
309 |
+
super().__init__()
|
310 |
+
self.hidden_dim = hidden_size
|
311 |
+
self.num_heads = num_heads
|
312 |
+
head_dim = hidden_size // num_heads
|
313 |
+
self.scale = qk_scale or head_dim**-0.5
|
314 |
+
|
315 |
+
self.mlp_hidden_dim = int(hidden_size * mlp_ratio)
|
316 |
+
# qkv and mlp_in
|
317 |
+
self.linear1 = nn.Linear(hidden_size, hidden_size * 3 + self.mlp_hidden_dim)
|
318 |
+
# proj and mlp_out
|
319 |
+
self.linear2 = nn.Linear(hidden_size + self.mlp_hidden_dim, hidden_size)
|
320 |
+
|
321 |
+
self.norm = QKNorm(head_dim)
|
322 |
+
|
323 |
+
self.hidden_size = hidden_size
|
324 |
+
self.pre_norm = nn.LayerNorm(hidden_size, elementwise_affine=False, eps=1e-6)
|
325 |
+
|
326 |
+
self.mlp_act = nn.GELU(approximate="tanh")
|
327 |
+
self.modulation = Modulation(hidden_size, double=False)
|
328 |
+
|
329 |
+
def forward(self, x: Tensor, vec: Tensor, pe: Tensor) -> Tensor:
|
330 |
+
mod, _ = self.modulation(vec)
|
331 |
+
x_mod = (1 + mod.scale) * self.pre_norm(x) + mod.shift
|
332 |
+
qkv, mlp = torch.split(self.linear1(x_mod), [3 * self.hidden_size, self.mlp_hidden_dim], dim=-1)
|
333 |
+
|
334 |
+
q, k, v = rearrange(qkv, "B L (K H D) -> K B H L D", K=3, H=self.num_heads)
|
335 |
+
q, k = self.norm(q, k, v)
|
336 |
+
|
337 |
+
# compute attention
|
338 |
+
attn = attention(q, k, v, pe=pe)
|
339 |
+
# compute activation in mlp stream, cat again and run second linear layer
|
340 |
+
output = self.linear2(torch.cat((attn, self.mlp_act(mlp)), 2))
|
341 |
+
return x + mod.gate * output
|
342 |
+
|
343 |
+
|
344 |
+
class LastLayer(nn.Module):
|
345 |
+
def __init__(self, hidden_size: int, patch_size: int, out_channels: int):
|
346 |
+
super().__init__()
|
347 |
+
self.norm_final = nn.LayerNorm(hidden_size, elementwise_affine=False, eps=1e-6)
|
348 |
+
self.linear = nn.Linear(hidden_size, patch_size * patch_size * out_channels, bias=True)
|
349 |
+
self.adaLN_modulation = nn.Sequential(nn.SiLU(), nn.Linear(hidden_size, 2 * hidden_size, bias=True))
|
350 |
+
|
351 |
+
def forward(self, x: Tensor, vec: Tensor) -> Tensor:
|
352 |
+
shift, scale = self.adaLN_modulation(vec).chunk(2, dim=1)
|
353 |
+
x = (1 + scale[:, None, :]) * self.norm_final(x) + shift[:, None, :]
|
354 |
+
x = self.linear(x)
|
355 |
+
return x
|