import os import streamlit as st from datasets import load_dataset import re import time import requests from bs4 import BeautifulSoup import pandas as pd import torch.nn.functional as F from torch import Tensor from transformers import AutoTokenizer, AutoModel from keybert import KeyBERT from keyphrase_vectorizers import KeyphraseCountVectorizer kw_model=KeyBERT(model='AI-Growth-Lab/PatentSBERTa') tokenizer = AutoTokenizer.from_pretrained('intfloat/e5-base') model = AutoModel.from_pretrained('intfloat/e5-base') # Function to fetch categories, title, and related text from a Wikipedia page def fetch_wikipedia_data(article_title): url = f"https://en.wikipedia.org/wiki/{article_title.replace(' ', '_')}" response = requests.get(url) if response.status_code == 200: soup = BeautifulSoup(response.text, 'html.parser') # Find the categories section at the bottom of the page categories_section = soup.find("div", {"class": "mw-normal-catlinks"}) if categories_section: # Extract individual categories categories = [cat.text for cat in categories_section.find("ul").find_all("li")] # Extract the title title = article_title return {"title": title, "categories": categories} return None def get_wiki_category_aprch_1(pat_text): print(pat_text) keywords=kw_model.extract_keywords(pat_text,keyphrase_ngram_range=(1, 3),top_n=15,vectorizer=KeyphraseCountVectorizer()) titles=[] for i in range(len(keywords)): title=keywords[i][0] titles.append(title) data = [] for i in titles: results = fetch_wikipedia_data(i) data.append(results) cats=[] for i in range(len(data)): if data[i] is not None: cat=data[i]['categories'] cats.append(cat) result=[j for i in cats for j in i] res = [i for n, i in enumerate(result) if i not in result[:n]] return titles,res # return res def average_pool(last_hidden_states: Tensor, attention_mask: Tensor) -> Tensor: last_hidden = last_hidden_states.masked_fill(~attention_mask[..., None].bool(), 0.0) return last_hidden.sum(dim=1) / attention_mask.sum(dim=1)[..., None] def get_wiki_category(pat_text): # print(pat_text) keywords=kw_model.extract_keywords(pat_text,keyphrase_ngram_range=(1, 3),top_n=3,vectorizer=KeyphraseCountVectorizer()) titles=[] for i in range(len(keywords)): title=keywords[i][0] titles.append(title) batch_dict = tokenizer(titles, padding=True, truncation=True, return_tensors='pt') outputs = model(**batch_dict) embeddings = average_pool(outputs.last_hidden_state, batch_dict['attention_mask']) embeddings = F.normalize(embeddings, p=2, dim=1) values = embeddings.tolist() catgories_list = [] for value in values: try: response = index.query(vector=value,top_k=3,include_metadata=True) except: pinecone.init(api_key='b33ddf5d-5b1a-4d0e-9a3f-572008563791',environment='gcp-starter') index = pinecone.Index("wiki-index") response = index.query(vector=value,top_k=5,include_metadata=True) catgories = response['matches'][0]['metadata']['categories'] catgories_list.append(catgories.split(',')) flatList = [element for innerList in catgories_list for element in innerList] new_list = [item.replace("'", '') for item in flatList] a_list = [s.strip() for s in new_list] test_list = list(set(a_list)) # result=[j for i in flatList for j in i] # res = [i for n, i in enumerate(result) if i not in result[:n]] return test_list def main(): st.title('wikipedia-titles-category-generator') text = st.text_area("Enter a text paragraph:") if st.button('Get Wiki categories'): st.write("Predicting Wiki Categories for text:",text[:200]) start_time = time.time() titles,wiki_categories=get_wiki_category_aprch_1(text) end_time = time.time() st.write({f"Wiki_titles for Text":titles}) st.write({f"Wiki_categories for Text":wiki_categories}) if __name__ == "__main__": main()