import gradio as gr import json import torch import wavio from tqdm import tqdm from huggingface_hub import snapshot_download from models import AudioDiffusion, DDPMScheduler from audioldm.audio.stft import TacotronSTFT from audioldm.variational_autoencoder import AutoencoderKL from pydub import AudioSegment from gradio import Markdown import spaces import torch #from diffusers.models.autoencoder_kl import AutoencoderKL from diffusers.models.unet_2d_condition import UNet2DConditionModel from diffusers import DiffusionPipeline,AudioPipelineOutput from transformers import CLIPTextModel, T5EncoderModel, AutoModel, T5Tokenizer, T5TokenizerFast from typing import Union from diffusers.utils.torch_utils import randn_tensor from tqdm import tqdm class Tango2Pipeline(DiffusionPipeline): def __init__( self, vae: AutoencoderKL, text_encoder: T5EncoderModel, tokenizer: Union[T5Tokenizer, T5TokenizerFast], unet: UNet2DConditionModel, scheduler: DDPMScheduler ): super().__init__() self.register_modules(vae=vae, text_encoder=text_encoder, tokenizer=tokenizer, unet=unet, scheduler=scheduler ) def _encode_prompt(self, prompt): device = self.text_encoder.device batch = self.tokenizer( prompt, max_length=self.tokenizer.model_max_length, padding=True, truncation=True, return_tensors="pt" ) input_ids, attention_mask = batch.input_ids.to(device), batch.attention_mask.to(device) encoder_hidden_states = self.text_encoder( input_ids=input_ids, attention_mask=attention_mask )[0] boolean_encoder_mask = (attention_mask == 1).to(device) return encoder_hidden_states, boolean_encoder_mask def _encode_text_classifier_free(self, prompt, num_samples_per_prompt): device = self.text_encoder.device batch = self.tokenizer( prompt, max_length=self.tokenizer.model_max_length, padding=True, truncation=True, return_tensors="pt" ) input_ids, attention_mask = batch.input_ids.to(device), batch.attention_mask.to(device) with torch.no_grad(): prompt_embeds = self.text_encoder( input_ids=input_ids, attention_mask=attention_mask )[0] prompt_embeds = prompt_embeds.repeat_interleave(num_samples_per_prompt, 0) attention_mask = attention_mask.repeat_interleave(num_samples_per_prompt, 0) # get unconditional embeddings for classifier free guidance uncond_tokens = [""] * len(prompt) max_length = prompt_embeds.shape[1] uncond_batch = self.tokenizer( uncond_tokens, max_length=max_length, padding="max_length", truncation=True, return_tensors="pt", ) uncond_input_ids = uncond_batch.input_ids.to(device) uncond_attention_mask = uncond_batch.attention_mask.to(device) with torch.no_grad(): negative_prompt_embeds = self.text_encoder( input_ids=uncond_input_ids, attention_mask=uncond_attention_mask )[0] negative_prompt_embeds = negative_prompt_embeds.repeat_interleave(num_samples_per_prompt, 0) uncond_attention_mask = uncond_attention_mask.repeat_interleave(num_samples_per_prompt, 0) # For classifier free guidance, we need to do two forward passes. # We concatenate the unconditional and text embeddings into a single batch to avoid doing two forward passes prompt_embeds = torch.cat([negative_prompt_embeds, prompt_embeds]) prompt_mask = torch.cat([uncond_attention_mask, attention_mask]) boolean_prompt_mask = (prompt_mask == 1).to(device) return prompt_embeds, boolean_prompt_mask def prepare_latents(self, batch_size, inference_scheduler, num_channels_latents, dtype, device): shape = (batch_size, num_channels_latents, 256, 16) latents = randn_tensor(shape, generator=None, device=device, dtype=dtype) # scale the initial noise by the standard deviation required by the scheduler latents = latents * inference_scheduler.init_noise_sigma return latents @torch.no_grad() def inference(self, prompt, inference_scheduler, num_steps=20, guidance_scale=3, num_samples_per_prompt=1, disable_progress=True): device = self.text_encoder.device classifier_free_guidance = guidance_scale > 1.0 batch_size = len(prompt) * num_samples_per_prompt if classifier_free_guidance: prompt_embeds, boolean_prompt_mask = self._encode_text_classifier_free(prompt, num_samples_per_prompt) else: prompt_embeds, boolean_prompt_mask = self._encode_text(prompt) prompt_embeds = prompt_embeds.repeat_interleave(num_samples_per_prompt, 0) boolean_prompt_mask = boolean_prompt_mask.repeat_interleave(num_samples_per_prompt, 0) inference_scheduler.set_timesteps(num_steps, device=device) timesteps = inference_scheduler.timesteps num_channels_latents = self.unet.config.in_channels latents = self.prepare_latents(batch_size, inference_scheduler, num_channels_latents, prompt_embeds.dtype, device) num_warmup_steps = len(timesteps) - num_steps * inference_scheduler.order progress_bar = tqdm(range(num_steps), disable=disable_progress) for i, t in enumerate(timesteps): # expand the latents if we are doing classifier free guidance latent_model_input = torch.cat([latents] * 2) if classifier_free_guidance else latents latent_model_input = inference_scheduler.scale_model_input(latent_model_input, t) noise_pred = self.unet( latent_model_input, t, encoder_hidden_states=prompt_embeds, encoder_attention_mask=boolean_prompt_mask ).sample # perform guidance if classifier_free_guidance: noise_pred_uncond, noise_pred_text = noise_pred.chunk(2) noise_pred = noise_pred_uncond + guidance_scale * (noise_pred_text - noise_pred_uncond) # compute the previous noisy sample x_t -> x_t-1 latents = inference_scheduler.step(noise_pred, t, latents).prev_sample # call the callback, if provided if i == len(timesteps) - 1 or ((i + 1) > num_warmup_steps and (i + 1) % inference_scheduler.order == 0): progress_bar.update(1) return latents @torch.no_grad() def __call__(self, prompt, steps=100, guidance=3, samples=1, disable_progress=True): """ Genrate audio for a single prompt string. """ with torch.no_grad(): latents = self.inference([prompt], self.scheduler, steps, guidance, samples, disable_progress=disable_progress) mel = self.vae.decode_first_stage(latents) wave = self.vae.decode_to_waveform(mel) return AudioPipelineOutput(audios=wave) # Automatic device detection if torch.cuda.is_available(): device_type = "cuda" device_selection = "cuda:0" else: device_type = "cpu" device_selection = "cpu" class Tango: def __init__(self, name="declare-lab/tango2", device=device_selection): path = snapshot_download(repo_id=name) vae_config = json.load(open("{}/vae_config.json".format(path))) stft_config = json.load(open("{}/stft_config.json".format(path))) main_config = json.load(open("{}/main_config.json".format(path))) self.vae = AutoencoderKL(**vae_config).to(device) self.stft = TacotronSTFT(**stft_config).to(device) self.model = AudioDiffusion(**main_config).to(device) vae_weights = torch.load("{}/pytorch_model_vae.bin".format(path), map_location=device) stft_weights = torch.load("{}/pytorch_model_stft.bin".format(path), map_location=device) main_weights = torch.load("{}/pytorch_model_main.bin".format(path), map_location=device) self.vae.load_state_dict(vae_weights) self.stft.load_state_dict(stft_weights) self.model.load_state_dict(main_weights) print ("Successfully loaded checkpoint from:", name) self.vae.eval() self.stft.eval() self.model.eval() self.scheduler = DDPMScheduler.from_pretrained(main_config["scheduler_name"], subfolder="scheduler") def chunks(self, lst, n): """ Yield successive n-sized chunks from a list. """ for i in range(0, len(lst), n): yield lst[i:i + n] def generate(self, prompt, steps=100, guidance=3, samples=1, disable_progress=True): """ Genrate audio for a single prompt string. """ with torch.no_grad(): latents = self.model.inference([prompt], self.scheduler, steps, guidance, samples, disable_progress=disable_progress) mel = self.vae.decode_first_stage(latents) wave = self.vae.decode_to_waveform(mel) return wave[0] def generate_for_batch(self, prompts, steps=200, guidance=3, samples=1, batch_size=8, disable_progress=True): """ Genrate audio for a list of prompt strings. """ outputs = [] for k in tqdm(range(0, len(prompts), batch_size)): batch = prompts[k: k+batch_size] with torch.no_grad(): latents = self.model.inference(batch, self.scheduler, steps, guidance, samples, disable_progress=disable_progress) mel = self.vae.decode_first_stage(latents) wave = self.vae.decode_to_waveform(mel) outputs += [item for item in wave] if samples == 1: return outputs else: return list(self.chunks(outputs, samples)) # Initialize TANGO tango = Tango(device="cpu") tango.vae.to(device_type) tango.stft.to(device_type) tango.model.to(device_type) pipe = Tango2Pipeline(vae=tango.vae, text_encoder=tango.model.text_encoder, tokenizer=tango.model.tokenizer, unet=tango.model.unet, scheduler=tango.scheduler ) @spaces.GPU(duration=60) def gradio_generate(prompt, output_format, steps, guidance): output_wave = pipe(prompt,steps,guidance) ## Using pipeliine automatically uses flash attention for torch2.0 above #output_wave = tango.generate(prompt, steps, guidance) # output_filename = f"{prompt.replace(' ', '_')}_{steps}_{guidance}"[:250] + ".wav" output_wave = output_wave.audios[0] output_filename = "temp.wav" wavio.write(output_filename, output_wave, rate=16000, sampwidth=2) if (output_format == "mp3"): AudioSegment.from_wav("temp.wav").export("temp.mp3", format = "mp3") output_filename = "temp.mp3" return output_filename # description_text = """ #
For faster inference without waiting in queue, you may duplicate the space and upgrade to a GPU in the settings.
# Generate audio using TANGO by providing a text prompt.
#
Limitations: TANGO is trained on the small AudioCaps dataset so it may not generate good audio \
# samples related to concepts that it has not seen in training (e.g. singing). For the same reason, TANGO \
# is not always able to finely control its generations over textual control prompts. For example, \
# the generations from TANGO for prompts Chopping tomatoes on a wooden table and Chopping potatoes \
# on a metal table are very similar. \
#
We are currently training another version of TANGO on larger datasets to enhance its generalization, \
# compositional and controllable generation ability.
#
We recommend using a guidance scale of 3. The default number of steps is set to 100. More steps generally lead to better quality of generated audios but will take longer.
#
#
For faster inference without waiting in queue, you may duplicate the space and upgrade to a GPU in the settings.
Generate audio using Tango2 by providing a text prompt. Tango2 was built from Tango and was trained on Audio-alpaca
This is the demo for Tango2 for text to audio generation: Read our paper.