effibench-leaderboard / code_efficiency_calculator.py
qyhfrank's picture
chore: Reorder arguments in run_model_task function
8a5784f
import json
import os
from execution import check_correctness
import copy
import argparse
from tqdm import tqdm
import subprocess
from concurrent.futures import ThreadPoolExecutor
import concurrent.futures
import os
import re
import shutil
import contextlib
from concurrent.futures import ThreadPoolExecutor
import concurrent.futures
from tqdm import tqdm
import contextlib
import io
import os
import signal
from tqdm import tqdm
class TimeoutException(Exception):
pass
class WriteOnlyStringIO(io.StringIO):
""" StringIO that throws an exception when it's read from """
def read(self, *args, **kwargs):
raise IOError
def readline(self, *args, **kwargs):
raise IOError
def readlines(self, *args, **kwargs):
raise IOError
def readable(self, *args, **kwargs):
""" Returns True if the IO object can be read. """
return False
class redirect_stdin(contextlib._RedirectStream): # type: ignore
_stream = 'stdin'
@contextlib.contextmanager
def swallow_io():
stream = WriteOnlyStringIO()
with contextlib.redirect_stdout(stream):
with contextlib.redirect_stderr(stream):
with redirect_stdin(stream):
yield
@contextlib.contextmanager
def time_limit(seconds: float):
def signal_handler(signum, frame):
raise TimeoutException("Timed out!")
signal.setitimer(signal.ITIMER_REAL, seconds)
signal.signal(signal.SIGALRM, signal_handler)
try:
yield
finally:
signal.setitimer(signal.ITIMER_REAL, 0)
ListNode_text = """
class ListNode:
def __init__(self, val=0, next=None):
self.val = val
self.next = next
"""
TreeNode_text = """
class TreeNode:
def __init__(self, val=0, left=None, right=None, next=None):
self.val = val
self.left = left
self.right = right
self.next = next
"""
import_pkg = """
from typing import *
from bisect import *
from collections import *
from copy import *
from datetime import *
from heapq import *
from math import *
from re import *
from string import *
from random import *
from itertools import *
from functools import *
from operator import *
import string
import re
import datetime
import collections
import heapq
import bisect
import copy
import math
import random
import itertools
import functools
import operator
"""
memory_profiler_prompt = r"""
def parse_profile_table(profile_table: str):
table = {"filename": None, "rows": []}
for line in profile_table.strip().split("\n"):
if line.startswith("Filename:"):
table["filename"] = line.split(": ")[1]
elif re.match(r"^\s*\d+", line):
parts = re.split(r"\s{2,}", line.strip(), maxsplit=4)
if len(parts) == 5 and "iB" in parts[1] and "iB" in parts[2]:
table["rows"].append({
"line": int(parts[0]),
"mem_usage": parts[1],
"increment": parts[2],
"occurrences": int(parts[3]),
"line_contents": parts[4],
})
else:
parts = re.split(r"\s{2,}", line.strip(), maxsplit=1)
table["rows"].append({
"line": int(parts[0]),
"line_contents": parts[1] if len(parts) == 2 else "",
})
return table
def print_averaged_results(profile_log: str, precision: int = 1):
tables = [parse_profile_table(table) for table in profile_log.split("\n\n\n")]
averaged_table = defaultdict(lambda: defaultdict(list))
for table in tables:
filename = table["filename"]
for row in table["rows"]:
line = row["line"]
if "mem_usage" in row:
mem_usage = float(row["mem_usage"].split()[0])
increment = float(row["increment"].split()[0])
occurrences = row["occurrences"]
averaged_table[filename][line].append((mem_usage, increment, occurrences))
else:
averaged_table[filename][line].append(tuple())
stream = sys.stdout
template = '{0:>6} {1:>12} {2:>12} {3:>10} {4:<}'
for filename, lines in averaged_table.items():
header = template.format('Line #', 'Mem usage', 'Increment', 'Occurrences', 'Line Contents')
stream.write(u'Filename: ' + filename + '\n\n')
stream.write(header + u'\n')
stream.write(u'=' * len(header) + '\n')
all_lines = linecache.getlines(filename)
float_format = u'{0}.{1}f'.format(precision + 4, precision)
template_mem = u'{0:' + float_format + '} MiB'
for lineno, mem_values in lines.items():
# TODO: should average the rest or not?
# mem_values = [(50.1, 0.0, 4), (51.1, 0.0, 6), ()]
if any([len(m) == 0 for m in mem_values]):
tmp = template.format(lineno, "", "", "", all_lines[lineno - 1])
else:
mem_usage_sum = sum(m[0] for m in mem_values)
increment_sum = sum(m[1] for m in mem_values)
occurrences_sum = sum(m[2] for m in mem_values)
count = len(mem_values)
avg_mem_usage = mem_usage_sum / count
avg_increment = increment_sum / count
avg_occurrences = occurrences_sum / count
avg_mem_usage_str = template_mem.format(avg_mem_usage)
avg_increment_str = template_mem.format(avg_increment)
tmp = template.format(lineno, avg_mem_usage_str, avg_increment_str, int(avg_occurrences), all_lines[lineno - 1])
stream.write(tmp)
print_averaged_results(profile_stream.getvalue(), precision=PROFILE_PRECISION)
"""
memory_profiler_pkgs = r"""
from collections import defaultdict, deque
from memory_profiler import profile
import io
profile_stream = io.StringIO()
PROFILE_PRECISION = 1
import re
import sys
import linecache
"""
def calculate_memory_usage(dat_file_path):
with open(dat_file_path, 'r') as file:
prev_time = 0
prev_mem_mb = 0
mem_time_mb_s = 0
next(file)
for line in file:
if not line.startswith('MEM'):
continue # Skip any line that does not start with 'MEM'
parts = line.split()
mem_in_mb = float(parts[1])
timestamp = float(parts[2])
if prev_time > 0:
time_interval_s = timestamp - prev_time
mem_time_mb_s += (prev_mem_mb + mem_in_mb) / 2 * time_interval_s
prev_time = timestamp
prev_mem_mb = mem_in_mb
return mem_time_mb_s
def calculate_runtime(dat_file_path):
with open(dat_file_path, 'r') as file:
start_time = float("inf")
end_time = float("-inf")
next(file)
for line in file:
if not line.startswith('MEM'):
continue # Skip any line that does not start with 'MEM'
parts = line.split()
timestamp = float(parts[2])
start_time = min(start_time, timestamp)
end_time = max(end_time, timestamp)
return max(end_time - start_time,0)
def report_max_memory_usage(dat_file_path):
max_memory_usage = 0
with open(dat_file_path, 'r') as file:
prev_time = 0
prev_mem_mb = 0
mem_time_mb_s = 0
next(file)
for line in file:
if not line.startswith('MEM'):
continue # Skip any line that does not start with 'MEM'
parts = line.split()
mem_in_mb = float(parts[1])
max_memory_usage = max(max_memory_usage, mem_in_mb)
return max_memory_usage
def add_profile_decorator_to_python_file(file_path,entry_point):
"""给Python文件中的函数自动添加@profile装饰器。"""
try:
with open(file_path, 'r') as file:
lines = file.readlines()
if "humaneval" in file_path:
with open(file_path, 'w') as file:
inside_class = False
class_indent = 0
for line in lines:
stripped_line = line.lstrip()
if stripped_line.startswith(f"def {entry_point}"):
inside_class = True
class_indent = len(line) - len(stripped_line)
file.write('@profile\n')
file.write(line)
continue
if inside_class:
if stripped_line and not line[class_indent].isspace():
inside_class = False
elif stripped_line.startswith("def "):
file.write(' ' * class_indent + '@profile\n')
file.write(line)
if "mbpp" in file_path:
entry_point
with open(file_path, 'w') as file:
inside_class = False
class_indent = 0
for line in lines:
stripped_line = line.lstrip()
if stripped_line.startswith(f"def {entry_point}"):
inside_class = True
class_indent = len(line) - len(stripped_line)
file.write('@profile\n')
file.write(line)
continue
if inside_class:
if stripped_line and not line[class_indent].isspace():
inside_class = False
elif stripped_line.startswith("def "):
file.write(' ' * class_indent + '@profile\n')
file.write(line)
else:
with open(file_path, 'w') as file:
inside_class = False
class_indent = 0
for line in lines:
stripped_line = line.lstrip()
if stripped_line.startswith("class Solution"):
inside_class = True
class_indent = len(line) - len(stripped_line)
file.write(line)
continue
if inside_class:
if stripped_line and not line[class_indent].isspace():
inside_class = False
elif stripped_line.startswith("def "):
file.write(' ' * class_indent + ' @profile\n')
file.write(line)
except Exception as e:
# print(f"Error during the file processing: {e}")
pass
def add_profile_for_memory_profiler(code_string,data):
"""给Python代码中的函数自动添加@profile装饰器。"""
entry_point = ""
try:
if "task_id" in data.keys() and "HumanEval" in data["task_id"]:
entry_point = data["entry_point"]
lines = code_string.split('\n')
new_lines = []
inside_class = False
class_indent = 0
first_function = True
for line in lines:
stripped_line = line.lstrip()
if stripped_line.startswith(f"def {entry_point}"):
inside_class = True
class_indent = len(line) - len(stripped_line)
new_lines.append(' ' * class_indent + '@profile(stream=profile_stream, precision=PROFILE_PRECISION)')
new_lines.append(line)
return '\n'.join(new_lines)
elif "task_id" in data.keys():
entry_point = data["entry_point"]
lines = code_string.split('\n')
new_lines = []
inside_class = False
class_indent = 0
first_function = True
for line in lines:
stripped_line = line.lstrip()
if stripped_line.startswith(f"def {entry_point}"):
inside_class = True
class_indent = len(line) - len(stripped_line)
new_lines.append(' ' * class_indent + '@profile(stream=profile_stream, precision=PROFILE_PRECISION)')
new_lines.append(line)
return '\n'.join(new_lines)
else:
lines = code_string.split('\n')
new_lines = []
inside_class = False
class_indent = 0
first_function = True
for line in lines:
stripped_line = line.lstrip()
if stripped_line.startswith("class Solution"):
inside_class = True
class_indent = len(line) - len(stripped_line)
new_lines.append(line)
continue
if inside_class:
if stripped_line and not line[class_indent].isspace():
inside_class = False
elif stripped_line.startswith("def ") and first_function:
new_lines.append(' ' * class_indent + ' @profile(stream=profile_stream, precision=PROFILE_PRECISION)')
first_function = False
new_lines.append(line)
return '\n'.join(new_lines)
except Exception as e:
return code_string
def calculate_line_efficiency(completion_file,entry_point):
try:
path, filename = os.path.split(completion_file)
tmp_py_script_filename = f"{filename.split('.')[0]}_tmp.py"
tmp_py_script = os.path.join(path, tmp_py_script_filename)
tmp_lprof_filename = f"{tmp_py_script_filename}.lprof" # 期望的lprof文件名
# 复制原始脚本到临时文件,并添加@profile装饰器
subprocess.run(['cp', completion_file, tmp_py_script],check=True, capture_output=True, text=True)
add_profile_decorator_to_python_file(tmp_py_script,entry_point)
subprocess.run(['timeout',"10",'kernprof', '-l', tmp_py_script_filename], cwd=path, capture_output=True, text=True, check=True)
# 生成性能报告
overhead_dir = path
# os.makedirs(overhead_dir, exist_ok=True)
report_file = os.path.join(overhead_dir, tmp_py_script_filename.replace('.py', '.txt'))
with open(report_file, 'w') as f:
subprocess.run(['timeout',"10",'python', '-m', 'line_profiler', tmp_lprof_filename], cwd=path, stdout=f)
with open(report_file, 'r') as f:
report_content = f.read()
# print(report_content)
except subprocess.CalledProcessError as e:
# print(f"Error during the execution: {e}")
report_content = f"Error during the execution: {e}"
# # 清理临时文件
if os.path.exists(tmp_py_script):
os.remove(tmp_py_script)
if os.path.exists(f"{tmp_py_script}.lprof"):
os.remove(f"{tmp_py_script}.lprof")
return report_content
def humaneval_add_string_to_py_file(data,evaluation_code=False, path="./tmp/"):
if "canonical_solution" in path:
data["completion"] = data["canonical_solution"]
if evaluation_code==False:
test_case = data["test"]
else:
test_case = data["small_test_cases"]
# test_case = data["small_test_cases"]
problem_idx = data["task_id"].split("/")[1]
return_path,full_code = None,""
tmp_code = data["completion"].split("\n")
code = []
for string in tmp_code:
if "print(" in string:
continue
else:
code.append(string)
data["completion"] = "\n".join(code)
try:
if f"```python" in data["completion"]:
start_idx = data["completion"].find(f"```python")
data["completion"] = data["completion"][start_idx+len(f"```python"):]
if "```" in data["completion"]:
end_idx = data["completion"].find("```")
data["completion"] = data["completion"][:end_idx]
full_code = import_pkg+ "\n"+data["prompt"] + "\n"+data["completion"] + "\n" + test_case
# with open(f"./{path}/{problem_idx}.py", "w") as f:
# f.write(full_code)
# return_path = f"./{path}/{problem_idx}.py"
result = check_correctness(full_code,timeout=10.0)
if result["passed"]:
with open(f"./{path}/{problem_idx}.py", "w") as f:
f.write(full_code)
return_path = f"./{path}/{problem_idx}.py"
# print(return_path)
else:
return_path = None
except Exception as e:
pass
# print(return_path,full_code)
return return_path,full_code
def mbpp_add_string_to_py_file(data,evaluation_code=False, path="./tmp/"):
if "canonical_solution" in path:
data["completion"] = data["code"]
if evaluation_code==False:
test_case = data["test"]
else:
test_case = "\n".join(data["test_list"])
# test_case = data["small_test_cases"]
problem_idx = str(data["task_id"])
return_path,full_code = None,""
tmp_code = data["completion"].split("\n")
code = []
for string in tmp_code:
if "print(" in string:
continue
else:
code.append(string)
data["completion"] = "\n".join(code)
try:
if f"```python" in data["completion"]:
start_idx = data["completion"].find(f"```python")
data["completion"] = data["completion"][start_idx+len(f"```python"):]
if "```" in data["completion"]:
end_idx = data["completion"].find("```")
data["completion"] = data["completion"][:end_idx]
full_code = "\n".join(data["test_imports"])+ "\n"+data["completion"] + "\n" + test_case
# with open(f"./{path}/{problem_idx}.py", "w") as f:
# f.write(full_code)
# return_path = f"./{path}/{problem_idx}.py"
result = check_correctness(full_code,timeout=10.0)
if result["passed"]:
with open(f"./{path}/{problem_idx}.py", "w") as f:
f.write(full_code)
return_path = f"./{path}/{problem_idx}.py"
except Exception as e:
# print(e)
pass
# print(return_path,full_code)
return return_path,full_code
def add_string_to_py_file(data,evaluation_code=False, path="./tmp/"):
if "canonical_solution" in path:
data["completion"] = data["canonical_solution"]
if evaluation_code==False:
test_case = data["test_case"]
else:
test_case = data["small_test_cases"]
# test_case = data["small_test_cases"]
problem_idx = data["problem_idx"]
return_path,full_code = None,""
tmp_code = data["completion"].split("\n")
code = []
for string in tmp_code:
if "print(" in string:
continue
else:
code.append(string)
data["completion"] = "\n".join(code)
try:
if "class Solution" in data["completion"]:
if "```python" in data["completion"]:
start_idx = data["completion"].find("```python")
data["completion"] = data["completion"][start_idx+9:]
if "```" in data["completion"]:
end_idx = data["completion"].find("```")
data["completion"] = data["completion"][:end_idx]
test_case = test_case.split("\n")[:100]
test_case = "\n".join(test_case)
# import_pkg
full_code = import_pkg + "\n"+TreeNode_text + "\n"+ListNode_text + "\n" + data["completion"] + "\nsolution=Solution()\n" + test_case
# with open(f"./{path}/{problem_idx}.py", "w") as f:
# f.write(full_code)
# return_path = f"./{path}/{problem_idx}.py"
result = check_correctness(full_code,timeout=10.0)
if result["passed"]:
with open(f"./{path}/{problem_idx}.py", "w") as f:
f.write(full_code)
return_path = f"./{path}/{problem_idx}.py"
# print(return_path)
else:
return_path = None
except Exception as e:
# print(e)
pass
return return_path,full_code
def calculate_code_execution_efficiency(data,evaluation_code=False,path="./tmp/",max_execution_time=10):
entry_point = ""
try:
if "task_id" in data.keys() and "HumanEval" in str(data["task_id"]):
problem_idx = data["task_id"].split("/")[1]
completion_file,full_code = humaneval_add_string_to_py_file(data,evaluation_code=evaluation_code, path=path)
entry_point = data["entry_point"]
# print(data.keys())
# print(data["dataset"])
elif "dataset" in data.keys() and data["dataset"]=="mbpp":
problem_idx = data["task_id"]
completion_file,full_code = mbpp_add_string_to_py_file(data,evaluation_code=evaluation_code, path=path)
code_example = data["code"]
match = re.search(r"def\s+(\w+)\s*\(", code_example)
if match:
entry_point = match.group(1)
else:
test_example = data["test_list"][0]
match = re.search(r"assert\s+(\w+)\s*\(", test_example)
if match:
entry_point = match.group(1)
else: completion_file== None
else:
problem_idx = data["problem_idx"]
completion_file,full_code = add_string_to_py_file(data,evaluation_code=evaluation_code, path=path)
except Exception as e:
# print(e)
completion_file = None
if completion_file == None:
# print("test")
overhead = f"""
The code execution failed.
"""
canonical_solution_memory_usage = 0
canonical_solution_execution_time = 0
canonical_solution_max_memory_usage = 0
executable = False
return overhead, canonical_solution_memory_usage, canonical_solution_execution_time, canonical_solution_max_memory_usage, executable
script_path = './run_code.sh'
completion_dat_file = f'./{path}/{problem_idx}.dat'
try:
subprocess.run([script_path, completion_file, completion_dat_file,str(max_execution_time)],
check=True, capture_output=True, text=True)
canonical_solution_memory_usage = calculate_memory_usage(completion_dat_file)
canonical_solution_execution_time = calculate_runtime(completion_dat_file)
canonical_solution_max_memory_usage = report_max_memory_usage(completion_dat_file)
executable = True
overhead = f"""
The total memory usage during the code execution is: {canonical_solution_memory_usage} MB*s.
The total execution time is: {canonical_solution_execution_time} s.
The maximum memory peak requirement is: {canonical_solution_max_memory_usage} MB.
"""
except Exception as e:
# print(e)
overhead = f"""
The code execution failed.
"""
canonical_solution_memory_usage = 0
canonical_solution_execution_time = 0
canonical_solution_max_memory_usage = 0
executable = False
return overhead, canonical_solution_memory_usage, canonical_solution_execution_time, canonical_solution_max_memory_usage, executable
def fetch_completion(dataset,model):
with ThreadPoolExecutor() as executor:
future_to_entry = {executor.submit(calculate_code_execution_efficiency, copy.deepcopy(entry),False, path=model,max_execution_time=10): entry for entry in tqdm(dataset)}
for future in tqdm(concurrent.futures.as_completed(future_to_entry)):
entry = future_to_entry[future]
try:
updated_entry = future.result()
idx = dataset.index(entry)
dataset[idx] = updated_entry
except Exception as e:
print(e)
return dataset
def run_model_task(task, model, file):
if "/" in model:
model = model.split("/")[1]
dat_path = f"./results/{task}_{model}"
canonical_solution_path = f"./results/{task}_canonical_solution"
with open(file, "r") as f:
dataset = json.load(f)
if os.path.exists(dat_path):
shutil.rmtree(dat_path)
if os.path.exists(canonical_solution_path):
shutil.rmtree(canonical_solution_path)
if os.path.exists(dat_path) == False:
os.makedirs(dat_path)
if os.path.exists(canonical_solution_path) == False:
os.makedirs(canonical_solution_path)
fetch_completion(dataset,dat_path)
with open(file, "r") as f:
dataset = json.load(f)
for i in range(len(dataset)):
dataset[i]["dataset"] = f"{task}"
fetch_completion(dataset,canonical_solution_path)
if __name__ == "__main__":
parse = argparse.ArgumentParser()
parse.add_argument("--task", type=str, default="EffiBench")
parse.add_argument("--model", type=str, default="gpt-4")
parse.add_argument("--file", type=str, default="")
args = parse.parse_args()
if not args.file:
args.file = f"./{args.task}_{args.model}.json"
run_model_task(args.task, args.model, args.file)