Spaces:
Runtime error
Runtime error
import os | |
import torch | |
import numpy as np | |
import pandas as pd | |
import matplotlib.pyplot as plt | |
from torch.utils.data import DataLoader | |
import torch.nn as nn | |
from collections import defaultdict | |
import torchvision | |
import torch.nn.functional as F | |
from torch.utils.data.sampler import Sampler | |
class Block(nn.Module): | |
def __init__(self, in_ch, out_ch, padding='same'): | |
super().__init__() | |
self.conv1 = nn.Conv2d(in_ch, out_ch, 3, padding=padding) | |
self.relu = nn.ReLU() | |
self.conv2 = nn.Conv2d(out_ch, out_ch, 3, padding=padding) | |
def forward(self, x): | |
return self.conv2(self.relu(self.conv1(x))) | |
class Encoder(nn.Module): | |
def __init__(self, chs=(3,32,64,128,256)): | |
super().__init__() | |
self.enc_blocks = nn.ModuleList([Block(chs[i], chs[i+1]) for i in range(len(chs)-1)]) | |
self.pool = nn.MaxPool2d(2) | |
def forward(self, x): | |
ftrs = [] | |
for block in self.enc_blocks: | |
x = block(x) | |
ftrs.append(x) | |
x = self.pool(x) | |
return ftrs | |
class Decoder(nn.Module): | |
def __init__(self, chs=(256,128, 64, 32), aux_ch=70): | |
super().__init__() | |
upchs = tuple([chs[i]+aux_ch if i == 0 else chs[i] for i in range(len(chs))]) | |
self.chs = chs | |
self.upchs = upchs | |
self.upconvs = nn.ModuleList([nn.ConvTranspose2d(upchs[i], upchs[i+1], 2, 2) for i in range(len(upchs)-1)]) | |
self.dec_blocks = nn.ModuleList([Block(chs[i], chs[i+1]) for i in range(len(chs)-1)]) | |
def forward(self, x, encoder_features): | |
for i in range(len(self.chs)-1): | |
# pdb.set_trace() | |
x = self.upconvs[i](x) | |
enc_ftrs = self.crop(encoder_features[i], x) | |
x = torch.cat([x, enc_ftrs], dim=1) | |
x = self.dec_blocks[i](x) | |
return x | |
def crop(self, enc_ftrs, x): | |
_, _, H, W = x.shape | |
enc_ftrs = torchvision.transforms.CenterCrop([H, W])(enc_ftrs) | |
return enc_ftrs | |
class AuxUNet(nn.Module): | |
# UNet with auxiliary feature at the bottom | |
def __init__(self, enc_chs=(3,32,64,128,256), dec_chs=(256,128, 64, 32), aux_ch=70, num_class=7, retain_dim=False, out_sz=(224,224)): | |
super().__init__() | |
self.encoder = Encoder(enc_chs) | |
self.decoder = Decoder(dec_chs, aux_ch) | |
self.head = nn.Conv2d(dec_chs[-1], num_class, 1) | |
self.retain_dim = retain_dim | |
def forward(self, x, aux): | |
# aux: auxiliary feature at the bottom | |
enc_ftrs = self.encoder(x) | |
enc_ftrs[-1] = torch.cat((enc_ftrs[-1], aux), 1) | |
out = self.decoder(enc_ftrs[::-1][0], enc_ftrs[::-1][1:]) | |
out = self.head(out) | |
if self.retain_dim: | |
out = F.interpolate(out, out_sz) | |
return out |