import gradio as gr from transformers import AutoTokenizer, AutoModelForCausalLM import torch model = AutoModelForCausalLM.from_pretrained("Vikhrmodels/Vikhr-7B-instruct_0.4", device_map="auto", attn_implementation="flash_attention_2", torch_dtype=torch.bfloat16) tokenizer = AutoTokenizer.from_pretrained("Vikhrmodels/Vikhr-7B-instruct_0.4") from transformers import AutoTokenizer, pipeline pipe = pipeline("text-generation", model=model, tokenizer=tokenizer) prompts = [ "В чем разница между фруктом и овощем?", "Годы жизни колмагорова?"] def test_inference(prompt): prompt = pipe.tokenizer.apply_chat_template([{"role": "user", "content": prompt}], tokenize=False, add_generation_prompt=True) print(prompt) outputs = pipe(prompt, max_new_tokens=512, do_sample=True, num_beams=1, temperature=0.25, top_k=50, top_p=0.98, eos_token_id=79097) return outputs[0]['generated_text'][len(prompt):].strip() for prompt in prompts: print(f" prompt:\n{prompt}") print(f" response:\n{test_inference(prompt)}") print("-"*50)