Spaces:
Running
on
Zero
Running
on
Zero
File size: 8,645 Bytes
445d3d1 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 |
"""Utility functions for training and inference."""
import functools
from pathlib import Path
import pickle
import warnings
from io import BytesIO
import torch
import torch.utils._device
from lightning.fabric.strategies import DeepSpeedStrategy, FSDPStrategy
from torch.distributed.fsdp import FullStateDictConfig
from torch.distributed.fsdp import FullyShardedDataParallel as FSDP
from torch.distributed.fsdp import StateDictType
def save_model_checkpoint(fabric, model, file_path):
"""Handles boilerplate logic for retrieving and saving the state_dict.
This will be upstreamed to Fabric soon.
"""
file_path = Path(file_path)
if isinstance(fabric.strategy, DeepSpeedStrategy):
from deepspeed.utils.zero_to_fp32 import convert_zero_checkpoint_to_fp32_state_dict
fabric.save(file_path, {"model": model})
fabric.barrier()
if fabric.global_rank == 0:
# Create a consolidated checkpoint with the same name next to the deepspeed checkpoint
convert_zero_checkpoint_to_fp32_state_dict(file_path, file_path.with_suffix(".pth"))
return
if isinstance(fabric.strategy, FSDPStrategy):
save_policy = FullStateDictConfig(offload_to_cpu=(fabric.world_size > 1), rank0_only=True)
with FSDP.state_dict_type(model, StateDictType.FULL_STATE_DICT, save_policy):
state_dict = model._forward_module.state_dict()
else:
state_dict = model.state_dict()
if fabric.global_rank == 0:
torch.save(state_dict, file_path)
fabric.barrier()
class EmptyInitOnDevice(torch.overrides.TorchFunctionMode):
def __init__(self, device=None, dtype=None, quantization_mode=None):
"""
Create tensors with given device and dtype and don't run initialization
(but instead use "empty tensors", i.e. uninitialized memory).
device: `torch.device` to work with
dtype: `torch.dtype` to work with
quantization_mode: optional string, quantization mode to work with, default `None`.
Available modes: `llm.int8` bitsnbytes LLM.int8 quantization (only on GPU)
`qptq.int4`, `gptq.int8`: GPTQ pre-quantized models
Example::
with EmptyInitOnDevice("cuda", dtype=torch.bfloat16):
model = LLaMA.from_name('7B')
model.load_state_dict(torch.load('llama-lit/7B/lit-llama.pth'))"""
self.quantization_mode = quantization_mode
self.quantized_linear_cls = None
if self.quantization_mode == 'llm.int8':
if device.type != "cuda":
raise ValueError("Quantization is only supported on the GPU.")
from .quantization import Linear8bitLt
self.quantized_linear_cls = Linear8bitLt
elif self.quantization_mode == 'gptq.int4':
from .quantization import ColBlockQuantizedLinear
self.quantized_linear_cls = functools.partial(ColBlockQuantizedLinear, bits=4, tile_cols=-1)
elif self.quantization_mode == 'gptq.int8':
from .quantization import ColBlockQuantizedLinear
self.quantized_linear_cls = functools.partial(ColBlockQuantizedLinear, bits=8, tile_cols=-1)
elif self.quantization_mode is not None:
raise RuntimeError(f"unknown quantization mode {self.quantization_mode}")
self.device = device
self.dtype = dtype
def __enter__(self):
if self.quantized_linear_cls != None:
self.torch_linear_cls = torch.nn.Linear
torch.nn.Linear = self.quantized_linear_cls
return super().__enter__()
def __exit__(self, exc_type, exc_val, exc_tb):
if self.quantized_linear_cls != None:
torch.nn.Linear = self.torch_linear_cls
return super().__exit__(exc_type, exc_val, exc_tb)
def __torch_function__(self, func, types, args=(), kwargs=None):
kwargs = kwargs or {}
if getattr(func, "__module__", None) == "torch.nn.init":
if "tensor" in kwargs:
return kwargs["tensor"]
else:
return args[0]
if (
self.device is not None
and func in torch.utils._device._device_constructors()
and kwargs.get("device") is None
):
kwargs["device"] = self.device
if (
self.dtype is not None
and func in torch.utils._device._device_constructors()
and kwargs.get("dtype") is None
):
kwargs["dtype"] = self.dtype
return func(*args, **kwargs)
# this is taken from torchhacks https://github.com/lernapparat/torchhacks
class NotYetLoadedTensor:
def __init__(self, metatensor, archiveinfo, storageinfo, rebuild_args):
self.metatensor = metatensor
self.archiveinfo = archiveinfo
self.storageinfo = storageinfo
self.rebuild_args = rebuild_args
@classmethod
def rebuild(
cls,
storage,
storage_offset,
size,
stride,
requires_grad,
backward_hooks,
metadata=None,
archiveinfo=None,
):
rebuild_args = (
storage_offset,
size,
stride,
requires_grad,
backward_hooks,
metadata,
)
metatensor = torch._utils._rebuild_tensor_v2(
storage,
storage_offset,
size,
stride,
requires_grad,
backward_hooks,
metadata,
)
storageinfo = storage.archiveinfo
return NotYetLoadedTensor(metatensor, archiveinfo, storageinfo, rebuild_args)
def _load_tensor(self):
name, storage_cls, fn, device, size = self.storageinfo
dtype = self.metatensor.dtype
uts = (
self.archiveinfo.zipfile.get_storage_from_record(
f"data/{fn}",
size * torch._utils._element_size(dtype),
torch.UntypedStorage,
)
._typed_storage()
._untyped_storage
)
with warnings.catch_warnings():
warnings.simplefilter("ignore")
storage = torch.storage.TypedStorage(
wrap_storage=uts, dtype=self.metatensor.dtype, _internal=True
)
tensor = torch._utils._rebuild_tensor_v2(storage, *self.rebuild_args)
return tensor
@classmethod
def __torch_function__(cls, func, types, args=(), kwargs=None):
if kwargs is None:
kwargs = {}
loaded_args = [
(a._load_tensor() if isinstance(a, NotYetLoadedTensor) else a) for a in args
]
res = func(*loaded_args, **kwargs)
# gc.collect would be costly here, maybe do it optionally
return res
def __getattr__(self, name):
# properties
## TODO: device, is_...??
## TODO: mH, mT, H, T, data, imag, real
## name ???
if name in {
"dtype",
"grad",
"grad_fn",
"layout",
"names",
"ndim",
"output_nr",
"requires_grad",
"retains_grad",
"shape",
"volatile",
}:
return getattr(self.metatensor, name)
if name in {"size"}:
return getattr(self.metatensor, name)
# materializing with contiguous is needed for quantization
if name in {"contiguous"}:
return getattr(self._load_tensor(), name)
raise AttributeError(f"{type(self)} does not have {name}")
def __repr__(self):
return f"NotYetLoadedTensor({repr(self.metatensor)})"
class LazyLoadingUnpickler(pickle.Unpickler):
def __init__(self, file, zipfile):
super().__init__(file)
self.zipfile = zipfile
def find_class(self, module, name):
if module == "torch._utils" and name == "_rebuild_tensor_v2":
res = super().find_class(module, name)
return functools.partial(NotYetLoadedTensor.rebuild, archiveinfo=self)
return super().find_class(module, name)
def persistent_load(self, pid):
name, cls, fn, device, size = pid
with warnings.catch_warnings():
warnings.simplefilter("ignore")
s = torch.storage.TypedStorage(dtype=cls().dtype, device="meta")
s.archiveinfo = pid
return s
def lazy_load(fn):
zf = torch._C.PyTorchFileReader(str(fn))
with BytesIO(zf.get_record("data.pkl")) as pkl:
mup = LazyLoadingUnpickler(pkl, zf)
sd = mup.load()
return sd
|