File size: 8,630 Bytes
445d3d1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
# Derived from https://github.com/microsoft/LoRA
#  ------------------------------------------------------------------------------------------
#  Copyright (c) Microsoft Corporation. All rights reserved.
#  Licensed under the MIT License (MIT). See LICENSE in the repo root for license information.
#  ------------------------------------------------------------------------------------------
import torch
import torch.nn as nn
import torch.nn.functional as F

import math
from typing import Dict, List

import lit_llama.model as llama

from contextlib import contextmanager
from dataclasses import dataclass

class LoRALayer():
    def __init__(
        self, 
        r: int, 
        lora_alpha: int, 
        lora_dropout: float,
        merge_weights: bool,
    ):
        self.r = r
        self.lora_alpha = lora_alpha
        # Optional dropout
        if lora_dropout > 0.:
            self.lora_dropout = nn.Dropout(p=lora_dropout)
        else:
            self.lora_dropout = lambda x: x
        # Mark the weight as unmerged
        self.merged = False
        self.merge_weights = merge_weights


class MergedLinear(nn.Linear, LoRALayer):
    # LoRA implemented in a dense layer
    def __init__(
        self, 
        in_features: int, 
        out_features: int, 
        r: int = 0, 
        lora_alpha: int = 1, 
        lora_dropout: float = 0.,
        enable_lora: List[bool] = [False],
        fan_in_fan_out: bool = False,
        merge_weights: bool = True,
        **kwargs
    ):
        nn.Linear.__init__(self, in_features, out_features, **kwargs)
        LoRALayer.__init__(self, r=r, lora_alpha=lora_alpha, lora_dropout=lora_dropout,
                           merge_weights=merge_weights)
        assert out_features % len(enable_lora) == 0, \
            'The length of enable_lora must divide out_features'
        self.enable_lora = enable_lora
        self.fan_in_fan_out = fan_in_fan_out
        # Actual trainable parameters
        if r > 0 and any(enable_lora):
            self.lora_A = nn.Parameter(
                self.weight.new_zeros((r * sum(enable_lora), in_features)))
            self.lora_B = nn.Parameter(
                self.weight.new_zeros((out_features // len(enable_lora) * sum(enable_lora), r))
            ) # weights for Conv1D with groups=sum(enable_lora)
            self.scaling = self.lora_alpha / self.r
            # Freezing the pre-trained weight matrix
            self.weight.requires_grad = False
            # Compute the indices
            self.lora_ind = self.weight.new_zeros(
                (out_features, ), dtype=torch.bool
            ).view(len(enable_lora), -1)
            self.lora_ind[enable_lora, :] = True
            self.lora_ind = self.lora_ind.view(-1)
        self.reset_parameters()
        if fan_in_fan_out:
            self.weight.data = self.weight.data.T

    def reset_parameters(self):
        nn.Linear.reset_parameters(self)
        if hasattr(self, 'lora_A'):
            # initialize A the same way as the default for nn.Linear and B to zero
            nn.init.kaiming_uniform_(self.lora_A, a=math.sqrt(5))
            nn.init.zeros_(self.lora_B)

    def zero_pad(self, x):
        result = x.new_zeros((*x.shape[:-1], self.out_features))
        result = result.view(-1, self.out_features)
        result[:, self.lora_ind] = x.reshape(
            -1, self.out_features // len(self.enable_lora) * sum(self.enable_lora)
        )
        return result.view((*x.shape[:-1], self.out_features))

    def train(self, mode: bool = True):
        def T(w):
            return w.T if self.fan_in_fan_out else w
        nn.Linear.train(self, mode)
        if self.merge_weights and self.merged:
            # Make sure that the weights are not merged
            if self.r > 0 and any(self.enable_lora):
                delta_w = F.conv1d(
                    self.lora_A.data.unsqueeze(0), 
                    self.lora_B.data.unsqueeze(-1), 
                    groups=sum(self.enable_lora)
                ).squeeze(0)
                self.weight.data -= self.zero_pad(T(delta_w * self.scaling))
            self.merged = False
    
    def eval(self):
        def T(w):
            return w.T if self.fan_in_fan_out else w
        nn.Linear.eval(self)
        if self.merge_weights and not self.merged:
            # Merge the weights and mark it
            if self.r > 0 and any(self.enable_lora):
                delta_w = F.conv1d(
                    self.lora_A.data.unsqueeze(0), 
                    self.lora_B.data.unsqueeze(-1), 
                    groups=sum(self.enable_lora)
                ).squeeze(0)
                self.weight.data += self.zero_pad(T(delta_w * self.scaling))
            self.merged = True

    def forward(self, x: torch.Tensor):
        def T(w):
            return w.T if self.fan_in_fan_out else w
        if self.merged:
            return F.linear(x, T(self.weight), bias=self.bias)
        else:
            result = F.linear(x, T(self.weight), bias=self.bias)
            if self.r > 0:
                after_A = F.linear(self.lora_dropout(x), self.lora_A)
                after_B = F.conv1d(
                    after_A.transpose(-2, -1), 
                    self.lora_B.unsqueeze(-1), 
                    groups=sum(self.enable_lora)
                ).transpose(-2, -1)
                result += self.zero_pad(after_B) * self.scaling
            return result


def mark_only_lora_as_trainable(model: nn.Module, bias: str = 'none') -> None:
    # import pdb; pdb.set_trace()
    for n, p in model.named_parameters():
        if 'lora_' not in n and 'motion_proj' not in n and 'llama_proj' not in n:
            p.requires_grad = False
    if bias == 'none':
        return
    elif bias == 'all':
        for n, p in model.named_parameters():
            if 'bias' in n:
                p.requires_grad = True
    elif bias == 'lora_only':
        for m in model.modules():
            if isinstance(m, LoRALayer) and \
                hasattr(m, 'bias') and \
                m.bias is not None:
                    m.bias.requires_grad = True
    else:
        raise NotImplementedError


def lora_state_dict(model: nn.Module, bias: str = 'none') -> Dict[str, torch.Tensor]:
    my_state_dict = model.state_dict()
    if bias == 'none':
        return {k: my_state_dict[k] for k in my_state_dict if 'lora_' in k or 'llama_proj' in k or 'motion_proj' in k}
    elif bias == 'all':
        return {k: my_state_dict[k] for k in my_state_dict if 'lora_' in k or 'bias' in k or 'llama_proj' in k or 'motion_proj' in k}
    elif bias == 'lora_only':
        to_return = {}
        for k in my_state_dict:
            if 'lora_' in k:
                to_return[k] = my_state_dict[k]
                bias_name = k.split('lora_')[0]+'bias'
                if bias_name in my_state_dict:
                    to_return[bias_name] = my_state_dict[bias_name]
        return to_return
    else:
        raise NotImplementedError


@dataclass
class LoRAConfig:
    r: float = 0.0
    alpha: float = 1.0
    dropout: float = 0.0


class CausalSelfAttention(llama.CausalSelfAttention):
    lora_config = None

    def __init__(self, config: llama.LLaMAConfig) -> None:
        # Skip the parent class __init__ altogether and replace it to avoid
        # useless allocations
        nn.Module.__init__(self)
        assert config.n_embd % config.n_head == 0

        # key, query, value projections for all heads, but in a batch
        self.c_attn = MergedLinear(
            in_features=config.n_embd,
            out_features=3 * config.n_embd,
            r=self.lora_config.r,
            lora_alpha=self.lora_config.alpha,
            lora_dropout=self.lora_config.dropout,
            enable_lora=[True, False, True],
            fan_in_fan_out = False,
            merge_weights=True,
            bias=False)
        # output projection
        self.c_proj = nn.Linear(config.n_embd, config.n_embd, bias=False)
        # regularization
        self.n_head = config.n_head
        self.n_embd = config.n_embd
        self.block_size = config.block_size
        self.rope_cache = None


@contextmanager
def lora(r, alpha, dropout, enabled: bool = True):
    """A context manager under which you can instantiate the model with LoRA."""
    if not enabled:
        yield
        return

    CausalSelfAttention.lora_config = LoRAConfig(r=r, alpha=alpha, dropout=dropout)

    causal_self_attention = llama.CausalSelfAttention
    llama.CausalSelfAttention = CausalSelfAttention
    yield
    llama.CausalSelfAttention = causal_self_attention

    CausalSelfAttention.lora_config = None