Spaces:
Running
on
Zero
Running
on
Zero
"""Implementation of the paper: | |
LLaMA-Adapter: Efficient Fine-tuning of Language Models with Zero-init Attention | |
https://arxiv.org/abs/2303.16199 | |
""" | |
# mypy: ignore-errors | |
import math | |
from dataclasses import dataclass | |
import torch | |
import torch.nn as nn | |
from torch.nn import functional as F | |
import lit_llama.model as llama | |
from lit_llama.model import build_rope_cache, apply_rope, RMSNorm, MLP | |
class LLaMAConfig(llama.LLaMAConfig): | |
adapter_prompt_length: int = 10 | |
adapter_start_layer: int = 2 | |
class CausalSelfAttention(nn.Module): | |
"""A modification of `lit_llama.model.CausalSelfAttention` that adds the attention | |
over the adaption prompt.""" | |
def __init__(self, config: LLaMAConfig, block_idx: int) -> None: | |
super().__init__() | |
assert config.n_embd % config.n_head == 0 | |
# key, query, value projections for all heads, but in a batch | |
self.c_attn = nn.Linear(config.n_embd, 3 * config.n_embd, bias=False) | |
# output projection | |
self.c_proj = nn.Linear(config.n_embd, config.n_embd, bias=False) | |
if block_idx >= config.adapter_start_layer: | |
# adapter embedding layer | |
self.adapter_wte = nn.Embedding(config.adapter_prompt_length, config.n_embd) | |
# gate for adaption | |
self.gating_factor = torch.nn.Parameter(torch.zeros(1)) | |
self.n_head = config.n_head | |
self.n_embd = config.n_embd | |
self.block_size = config.block_size | |
self.block_idx = block_idx | |
self.adapter_prompt_length = config.adapter_prompt_length | |
self.adapter_start_layer = config.adapter_start_layer | |
self.rope_cache = None | |
def forward(self, x: torch.Tensor) -> torch.Tensor: | |
B, T, C = x.size() # batch size, sequence length, embedding dimensionality (n_embd) | |
# calculate query, key, values for all heads in batch and move head forward to be the batch dim | |
q, k, v = self.c_attn(x).split(self.n_embd, dim=2) | |
head_size = C // self.n_head | |
k = k.view(B, T, self.n_head, head_size).transpose(1, 2) # (B, nh, T, hs) | |
q = q.view(B, T, self.n_head, head_size).transpose(1, 2) # (B, nh, T, hs) | |
v = v.view(B, T, self.n_head, head_size).transpose(1, 2) # (B, nh, T, hs) | |
if self.rope_cache is None: | |
# cache for future forward calls | |
self.rope_cache = build_rope_cache( | |
seq_len=self.block_size, | |
n_elem=self.n_embd // self.n_head, | |
dtype=x.dtype, | |
device=x.device, | |
) | |
q = apply_rope(q, self.rope_cache) | |
k = apply_rope(k, self.rope_cache) | |
# causal self-attention; Self-attend: (B, nh, T, hs) x (B, nh, hs, T) -> (B, nh, T, T) | |
# att = (q @ k.transpose(-2, -1)) * (1.0 / math.sqrt(k.size(-1))) | |
# att = att.masked_fill(self.bias[:,:,:T,:T] == 0, float('-inf')) | |
# att = F.softmax(att, dim=-1) | |
# y = att @ v # (B, nh, T, T) x (B, nh, T, hs) -> (B, nh, T, hs) | |
# efficient attention using Flash Attention CUDA kernels | |
y = F.scaled_dot_product_attention(q, k, v, attn_mask=None, dropout_p=0.0, is_causal=True) | |
if self.block_idx >= self.adapter_start_layer: | |
prefix = self.adapter_wte.weight.reshape(1, self.adapter_prompt_length, self.n_embd) | |
aT = prefix.size(1) | |
_, ak, av = self.c_attn(prefix).split(self.n_embd, dim=2) | |
ak = ak.view(1, aT, self.n_head, head_size).repeat(B, 1, 1, 1).transpose(1, 2) | |
av = av.view(1, aT, self.n_head, head_size).repeat(B, 1, 1, 1).transpose(1, 2) | |
amask = torch.ones(q.shape[-2], ak.shape[-2], dtype=torch.bool, device=x.device) | |
ay = F.scaled_dot_product_attention(q, ak, av, attn_mask=amask, dropout_p=0.0, is_causal=False) | |
y = y + self.gating_factor * ay | |
y = y.transpose(1, 2).contiguous().view(B, T, C) # re-assemble all head outputs side by side | |
# output projection | |
y = self.c_proj(y) | |
return y | |
class Block(nn.Module): | |
"""The implementation is identical to `lit_llama.model.Block` with the exception that | |
we replace the attention layer where adaption is implemented.""" | |
def __init__(self, config: LLaMAConfig, block_idx: int) -> None: | |
super().__init__() | |
self.rms_1 = RMSNorm(config.n_embd) | |
self.attn = CausalSelfAttention(config, block_idx) | |
self.rms_2 = RMSNorm(config.n_embd) | |
self.mlp = MLP(config) | |
def forward(self, x: torch.Tensor) -> torch.Tensor: | |
x = x + self.attn(self.rms_1(x)) | |
x = x + self.mlp(self.rms_2(x)) | |
return x | |
class LLaMA(llama.LLaMA): | |
"""The implementation is identical to `lit_llama.model.LLaMA` with the exception that | |
the `Block` saves the layer index and passes it down to the attention layer.""" | |
def __init__(self, config: LLaMAConfig) -> None: | |
nn.Module.__init__(self) | |
assert config.vocab_size is not None | |
assert config.block_size is not None | |
self.config = config | |
self.lm_head = nn.Linear(config.n_embd, config.vocab_size, bias=False) | |
self.transformer = nn.ModuleDict( | |
dict( | |
wte=nn.Embedding(config.vocab_size, config.n_embd), | |
h=nn.ModuleList([Block(config, i) for i in range(config.n_layer)]), | |
ln_f=RMSNorm(config.n_embd), | |
) | |
) | |
def from_name(cls, name: str): | |
return cls(LLaMAConfig.from_name(name)) | |
def mark_only_adapter_as_trainable(model: LLaMA) -> None: | |
"""Sets `requires_grad=False` for all non-adapter weights.""" | |
for name, param in model.named_parameters(): | |
param.requires_grad = "adapter_wte" in name or "gating_factor" in name | |
def adapter_state_from_state_dict(state_dict: dict) -> dict: | |
"""Returns the model state dict with only the adapter weights for saving.""" | |
return {name: param for name, param in state_dict.items() if "adapter_wte" in name or "gating_factor" in name} | |