MotionLLM / lit_llama /model.py
EvanTHU
update
445d3d1
raw
history blame
9.06 kB
"""Full definition of a LLaMA Language Model, all of it in this single file.
Based on the nanoGPT implementation: https://github.com/karpathy/nanoGPT.
"""
# mypy: ignore-errors
import math
from dataclasses import dataclass
import torch
import torch.nn as nn
from torch.nn import functional as F
from typing_extensions import Self
@dataclass
class LLaMAConfig:
block_size: int = 4096
vocab_size: int = 32000
n_layer: int = 32
n_head: int = 32
n_embd: int = 4096
@classmethod
def from_name(cls, name: str) -> Self:
return cls(**llama_configs[name])
llama_configs = {
"7B": dict(n_layer=32, n_head=32, n_embd=4096),
"13B": dict(n_layer=40, n_head=40, n_embd=5120),
"30B": dict(n_layer=60, n_head=52, n_embd=6656),
"65B": dict(n_layer=80, n_head=64, n_embd=8192),
}
class LLaMA(nn.Module):
def __init__(self, config: LLaMAConfig) -> None:
super().__init__()
assert config.vocab_size is not None
assert config.block_size is not None
self.config = config
self.lm_head = nn.Linear(config.n_embd, config.vocab_size, bias=False)
self.transformer = nn.ModuleDict(
dict(
wte=nn.Embedding(config.vocab_size, config.n_embd),
h=nn.ModuleList([Block(config) for _ in range(config.n_layer)]),
ln_f=RMSNorm(config.n_embd),
)
)
# self.llama_proj = nn.Sequential(
# nn.Linear(256, 1024),
# nn.ReLU(),
# nn.Linear(1024, config.n_embd)
# )
self.llama_proj = nn.Linear(512, config.n_embd)
# self.motion_proj = nn.Sequential(
# nn.Linear(config.n_embd, 1024),
# nn.ReLU(),
# nn.Linear(1024, 256)
# )
self.motion_proj = nn.Linear(config.n_embd, 512)
def _init_weights(self, module: nn.Module) -> None:
if isinstance(module, nn.Linear):
torch.nn.init.normal_(module.weight, mean=0.0, std=0.02 / math.sqrt(2 * self.config.n_layer))
elif isinstance(module, nn.Embedding):
torch.nn.init.normal_(module.weight, mean=0.0, std=0.02 / math.sqrt(2 * self.config.n_layer))
def forward(self, idx: torch.Tensor) -> torch.Tensor:
# import pdb; pdb.set_trace()
_, t = idx.size()
assert (
t <= self.config.block_size
), f"Cannot forward sequence of length {t}, block size is only {self.config.block_size}"
# forward the LLaMA model itself
x = self.transformer.wte(idx) # token embeddings of shape (b, t, n_embd)
for block in self.transformer.h:
x = block(x)
x = self.transformer.ln_f(x)
logits = self.lm_head(x) # (b, t, vocab_size)
return logits
@classmethod
def from_name(cls, name: str) -> Self:
return cls(LLaMAConfig.from_name(name))
class Block(nn.Module):
def __init__(self, config: LLaMAConfig) -> None:
super().__init__()
self.rms_1 = RMSNorm(config.n_embd)
self.attn = CausalSelfAttention(config)
self.rms_2 = RMSNorm(config.n_embd)
self.mlp = MLP(config)
def forward(self, x: torch.Tensor) -> torch.Tensor:
x = x + self.attn(self.rms_1(x))
x = x + self.mlp(self.rms_2(x))
return x
class CausalSelfAttention(nn.Module):
def __init__(self, config: LLaMAConfig) -> None:
super().__init__()
assert config.n_embd % config.n_head == 0
# key, query, value projections for all heads, but in a batch
self.c_attn = nn.Linear(config.n_embd, 3 * config.n_embd, bias=False)
# output projection
self.c_proj = nn.Linear(config.n_embd, config.n_embd, bias=False)
self.n_head = config.n_head
self.n_embd = config.n_embd
self.block_size = config.block_size
self.rope_cache = None
def forward(self, x: torch.Tensor) -> torch.Tensor:
B, T, C = x.size() # batch size, sequence length, embedding dimensionality (n_embd)
# calculate query, key, values for all heads in batch and move head forward to be the batch dim
q, k, v = self.c_attn(x).split(self.n_embd, dim=2)
head_size = C // self.n_head
k = k.view(B, T, self.n_head, head_size).transpose(1, 2) # (B, nh, T, hs)
q = q.view(B, T, self.n_head, head_size).transpose(1, 2) # (B, nh, T, hs)
v = v.view(B, T, self.n_head, head_size).transpose(1, 2) # (B, nh, T, hs)
if self.rope_cache is None:
# cache for future forward calls
self.rope_cache = build_rope_cache(
seq_len=self.block_size,
n_elem=self.n_embd // self.n_head,
dtype=x.dtype,
device=x.device,
)
q = apply_rope(q, self.rope_cache)
k = apply_rope(k, self.rope_cache)
# causal self-attention; Self-attend: (B, nh, T, hs) x (B, nh, hs, T) -> (B, nh, T, T)
# att = (q @ k.transpose(-2, -1)) * (1.0 / math.sqrt(k.size(-1)))
# att = att.masked_fill(self.bias[:,:,:T,:T] == 0, float('-inf'))
# att = F.softmax(att, dim=-1)
# y = att @ v # (B, nh, T, T) x (B, nh, T, hs) -> (B, nh, T, hs)
# efficient attention using Flash Attention CUDA kernels
y = F.scaled_dot_product_attention(q, k, v, attn_mask=None, dropout_p=0.0, is_causal=True)
y = y.transpose(1, 2).contiguous().view(B, T, C) # re-assemble all head outputs side by side
# output projection
y = self.c_proj(y)
return y
class MLP(nn.Module):
def __init__(self, config: LLaMAConfig) -> None:
super().__init__()
hidden_dim = 4 * config.n_embd
n_hidden = int(2 * hidden_dim / 3)
N = 256
# ensure n_hidden is multiple of N
n_hidden = ((n_hidden - 1) // N) * N + N
self.c_fc1 = nn.Linear(config.n_embd, n_hidden, bias=False)
self.c_fc2 = nn.Linear(config.n_embd, n_hidden, bias=False)
self.c_proj = nn.Linear(n_hidden, config.n_embd, bias=False)
def forward(self, x: torch.Tensor) -> torch.Tensor:
x = F.silu(self.c_fc1(x)) * self.c_fc2(x)
x = self.c_proj(x)
return x
class RMSNorm(nn.Module):
"""Root Mean Square Layer Normalization.
Derived from https://github.com/bzhangGo/rmsnorm/blob/master/rmsnorm_torch.py. BSD 3-Clause License:
https://github.com/bzhangGo/rmsnorm/blob/master/LICENSE.
"""
def __init__(self, size: int, dim: int = -1, eps: float = 1e-5) -> None:
super().__init__()
self.scale = nn.Parameter(torch.ones(size))
self.eps = eps
self.dim = dim
def forward(self, x: torch.Tensor) -> torch.Tensor:
# NOTE: the original RMSNorm paper implementation is not equivalent
# norm_x = x.norm(2, dim=self.dim, keepdim=True)
# rms_x = norm_x * d_x ** (-1. / 2)
# x_normed = x / (rms_x + self.eps)
norm_x = torch.mean(x * x, dim=self.dim, keepdim=True)
x_normed = x * torch.rsqrt(norm_x + self.eps)
return self.scale * x_normed
def build_rope_cache(seq_len: int, n_elem: int, dtype: torch.dtype, device: torch.device, base: int = 10000) -> torch.Tensor:
"""Enhanced Transformer with Rotary Position Embedding.
Derived from: https://github.com/labmlai/annotated_deep_learning_paper_implementations/blob/master/labml_nn/
transformers/rope/__init__.py. MIT License:
https://github.com/labmlai/annotated_deep_learning_paper_implementations/blob/master/license.
"""
# $\Theta = {\theta_i = 10000^{\frac{2(i-1)}{d}}, i \in [1, 2, ..., \frac{d}{2}]}$
theta = 1.0 / (base ** (torch.arange(0, n_elem, 2, dtype=dtype, device=device) / n_elem))
# Create position indexes `[0, 1, ..., seq_len - 1]`
seq_idx = torch.arange(seq_len, dtype=dtype, device=device)
# Calculate the product of position index and $\theta_i$
idx_theta = torch.outer(seq_idx, theta)
# Compute cache. Because polar only takes float32 or float64, we need to cast
# when working with 16 bit floats (float16 or bfloat16)
dtypes_requiring_casting = [torch.float16, torch.bfloat16, torch.int8]
working_dtype = (
torch.float32 if dtype in dtypes_requiring_casting else dtype
)
complex_dtype = (
torch.complex32 if dtype in dtypes_requiring_casting else torch.complex64
)
cache = torch.polar(
torch.ones_like(idx_theta).to(working_dtype), idx_theta.to(working_dtype)
).to(complex_dtype)
return cache
def apply_rope(x: torch.Tensor, rope_cache: torch.Tensor) -> torch.Tensor:
x = x.transpose(1, 2)
# truncate to support variable sizes
T = x.size(1)
rope_cache = rope_cache[:T]
# cast because `view_as_complex` does not support 16 bit tensors
xc = torch.view_as_complex(x.float().reshape(*x.shape[:-1], -1, 2))
rope_cache = rope_cache.view(1, xc.size(1), 1, xc.size(3))
x_out = torch.view_as_real(xc * rope_cache).flatten(3)
return x_out.transpose(1, 2).type_as(x)