import shutil import subprocess import os os.environ['GRADIO_TEMP_DIR']="temp" import torch import gradio as gr from fastapi import FastAPI import os from PIL import Image import tempfile from decord import VideoReader, cpu import uvicorn from transformers import TextStreamer import hashlib import sys import time import warnings from pathlib import Path from typing import Optional from typing import Dict, List, Literal, Optional, Tuple from lit_gpt.lora import GPT, Block, Config, lora_filter, mark_only_lora_as_trainable import lightning as L import numpy as np import torch.nn as nn import torch.nn.functional as F from generate import generate as generate_ from lit_llama import Tokenizer, LLaMA, LLaMAConfig from lit_llama.lora import lora from lit_llama.utils import EmptyInitOnDevice from lit_gpt.utils import lazy_load from scripts.video_dataset.prepare_video_dataset_video_llava import generate_prompt_mlp from options import option import imageio from tqdm import tqdm from models.multimodal_encoder.builder import build_image_tower, build_video_tower from models.multimodal_projector.builder import build_vision_projector import spaces title_markdown = ("""

MotionLLM: Understanding Human Behaviors from Human Motions and Videos

Ling-Hao Chen😎 1, 3, Shunlin Lu😎 2, 3,
Ailing Zeng3, Hao Zhang3, 4, Benyou Wang2, Ruimao Zhang2, Lei ZhangπŸ€— 3

😎Co-first author. Listing order is random.πŸ€—Corresponding author.

1THU   2CUHK (SZ)   3IDEA Research   4HKUST

MotionLLM
""") block_css = """ #buttons button { min-width: min(120px,100%); } """ tos_markdown = (""" *We are now working to support the motion branch of the MotionLLM model. ### Terms of use By using this service, users are required to agree to the following terms: The service is a research preview intended for non-commercial use only. It only provides limited safety measures and may generate offensive content. It is forbidden to use the service to generate content that is illegal, harmful, violent, racist, or sexual The usage of this service is subject to the IDEA License. """) learn_more_markdown = (""" ### License License for Non-commercial Scientific Research Purposes IDEA grants you a non-exclusive, worldwide, non-transferable, non-sublicensable, revocable, royalty free and limited license under IDEA’s copyright interests to reproduce, distribute, and create derivative works of the text, videos, codes solely for your non-commercial research purposes. Any other use, in particular any use for commercial, pornographic, military, or surveillance, purposes is prohibited. Text and visualization results are owned by International Digital Economy Academy (IDEA). You also need to obey the original license of the dependency models/data used in this service. """) class LlavaMetaModel: def __init__(self, config, pretrained_checkpoint): super(LlavaMetaModel, self).__init__() # import pdb; pdb.set_trace() if hasattr(config, "mm_image_tower") or hasattr(config, "image_tower"): self.image_tower = build_image_tower(config, delay_load=True) self.mm_projector = build_vision_projector(config) if hasattr(config, "mm_video_tower") or hasattr(config, "video_tower"): self.video_tower = build_video_tower(config, delay_load=True) self.mm_projector = build_vision_projector(config) self.load_video_tower_pretrained(pretrained_checkpoint) def get_image_tower(self): image_tower = getattr(self, 'image_tower', None) if type(image_tower) is list: image_tower = image_tower[0] return image_tower def get_video_tower(self): video_tower = getattr(self, 'video_tower', None) if type(video_tower) is list: video_tower = video_tower[0] return video_tower def get_all_tower(self, keys): tower = {key: getattr(self, f'get_{key}_tower') for key in keys} return tower def load_video_tower_pretrained(self, pretrained_checkpoint): self.mm_projector.load_state_dict(pretrained_checkpoint, strict=True) def initialize_image_modules(self, model_args, fsdp=None): image_tower = model_args.image_tower mm_vision_select_layer = model_args.mm_vision_select_layer mm_vision_select_feature = model_args.mm_vision_select_feature pretrain_mm_mlp_adapter = model_args.pretrain_mm_mlp_adapter self.config.mm_image_tower = image_tower image_tower = build_image_tower(model_args) if fsdp is not None and len(fsdp) > 0: self.image_tower = [image_tower] else: self.image_tower = image_tower self.config.use_mm_proj = True self.config.mm_projector_type = getattr(model_args, 'mm_projector_type', 'linear') self.config.mm_hidden_size = image_tower.hidden_size self.config.mm_vision_select_layer = mm_vision_select_layer self.config.mm_vision_select_feature = mm_vision_select_feature self.mm_projector = build_vision_projector(self.config) if pretrain_mm_mlp_adapter is not None: mm_projector_weights = torch.load(pretrain_mm_mlp_adapter, map_location='cpu') def get_w(weights, keyword): return {k.split(keyword + '.')[1]: v for k, v in weights.items() if keyword in k} self.mm_projector.load_state_dict(get_w(mm_projector_weights, 'mm_projector')) def initialize_video_modules(self, model_args, fsdp=None): video_tower = model_args.video_tower mm_vision_select_layer = model_args.mm_vision_select_layer mm_vision_select_feature = model_args.mm_vision_select_feature pretrain_mm_mlp_adapter = model_args.pretrain_mm_mlp_adapter self.config.mm_video_tower = video_tower video_tower = build_video_tower(model_args) if fsdp is not None and len(fsdp) > 0: self.video_tower = [video_tower] else: self.video_tower = video_tower self.config.use_mm_proj = True self.config.mm_projector_type = getattr(model_args, 'mm_projector_type', 'linear') self.config.mm_hidden_size = video_tower.hidden_size self.config.mm_vision_select_layer = mm_vision_select_layer self.config.mm_vision_select_feature = mm_vision_select_feature self.mm_projector = build_vision_projector(self.config) if pretrain_mm_mlp_adapter is not None: mm_projector_weights = torch.load(pretrain_mm_mlp_adapter, map_location='cpu') def get_w(weights, keyword): return {k.split(keyword + '.')[1]: v for k, v in weights.items() if keyword in k} self.mm_projector.load_state_dict(get_w(mm_projector_weights, 'mm_projector')) def encode_images(self, images): image_features = self.get_image_tower()(images) image_features = self.mm_projector(image_features) return image_features def encode_videos(self, videos): # import pdb; pdb.set_trace() # videos: torch.Size([1, 3, 8, 224, 224]) video_features = self.get_video_tower()(videos) # torch.Size([1, 2048, 1024]) video_features = self.mm_projector(video_features.float()) # torch.Size([1, 2048, 4096]) return video_features def get_multimodal_embeddings(self, X_modalities): Xs, keys= X_modalities X_features = getattr(self, f'encode_{keys[0]}s')(Xs) # expand to get batchsize return X_features class Projection(nn.Module): def __init__(self, ): super().__init__() self.linear_proj = nn.Linear(512, 4096) def forward(self, x): return self.linear_proj(x) class ProjectionNN(nn.Module): def __init__(self, ): super().__init__() self.proj = nn.Sequential( nn.Linear(512, 4096), nn.GELU(), nn.Linear(4096, 4096) ) def forward(self, x): return self.proj(x) class Conversation(): def __init__(self, output=None, input_prompt=None, prompt=None): if output is None: self.messages = [] else: self.messages = [] self.append_message(prompt, input_prompt, output) def append_message(self, output, input_prompt, prompt, show_images): # print(output) # print(input_prompt) # print(prompt) # print(show_images) self.messages.append((output, input_prompt, prompt, show_images)) def to_gradio_chatbot(self, show_images=None, output_text=None): # return a list if show_images is None: show_images = self.messages[-1][3] output_text = self.messages[-1][0] return [ [show_images, output_text] ] def get_info(self): return self.messages[-1][0], self.messages[-1][1] class ConversationBuffer(): def __init__(self, input_text): self.buffer_ = [] self.buffer.append(input_text) def init_conv(): conv = Conversation() return conv def get_processor(X, config, device, pretrained_checkpoint_tower, model_path = 'LanguageBind/MotionLLM-7B'): mm_backbone_mlp_model = LlavaMetaModel(config, pretrained_checkpoint_tower) processor = {} if 'Image' in X: image_tower = mm_backbone_mlp_model.get_image_tower() # LanguageBindImageTower() if not image_tower.is_loaded: image_tower.load_model() image_tower.to(device=device, dtype=torch.float16) image_processor = image_tower.image_processor processor['image'] = image_processor if 'Video' in X: video_tower = mm_backbone_mlp_model.get_video_tower() if not video_tower.is_loaded: video_tower.load_model() video_tower.to(device=device, dtype=torch.float16) video_processor = video_tower.video_processor processor['video'] = video_processor return mm_backbone_mlp_model, processor @spaces.GPU def motionllm( args, input_video_path: str, text_en_in: str, quantize: Optional[str] = None, dtype: str = "float32", max_new_tokens: int = 200, top_k: int = 200, temperature: float = 0.8, accelerator: str = "auto",): video_tensor = video_processor(input_video_path, return_tensors='pt')['pixel_values'] if type(video_tensor) is list: tensor = [video.to('cuda', dtype=torch.float16) for video in video_tensor] else: tensor = video_tensor.to('cuda', dtype=torch.float16) # (1,3,8,224,224) X_modalities = [tensor,['video']] video_feature = mm_backbone_mlp_model.get_multimodal_embeddings(X_modalities) prompt = text_en_in input_prompt = prompt sample = {"instruction": prompt, "input": input_video_path} prefix = generate_prompt_mlp(sample) pre = torch.cat((tokenizer.encode(prefix.split('INPUT_VIDEO: ')[0] + "\n", bos=True, eos=False, device=device).view(1, -1), tokenizer.encode("INPUT_VIDEO: ", bos=False, eos=False, device=device).view(1, -1)), dim=1) prompt = (pre, ". ASSISTANT: ") encoded = (prompt[0], video_feature[0], tokenizer.encode(prompt[1], bos=False, eos=False, device=device).view(1, -1)) t0 = time.perf_counter() output_seq = generate_( model, idx=encoded, max_seq_length=4096, max_new_tokens=max_new_tokens, temperature=temperature, top_k=top_k, eos_id=tokenizer.eos_id, tokenizer = tokenizer, ) outputfull = tokenizer.decode(output_seq) output = outputfull.split("ASSISTANT:")[-1].strip() print("================================") print(output) print("================================") prompt = (prompt[0].cpu(), prompt[1]) return output, input_prompt, prompt def save_image_to_local(image): filename = os.path.join('temp', next(tempfile._get_candidate_names()) + '.jpg') image = Image.open(image) image.save(filename) # print(filename) return filename def save_video_to_local(video_path): filename = os.path.join('temp', next(tempfile._get_candidate_names()) + '.mp4') shutil.copyfile(video_path, filename) return filename @spaces.GPU def generate(image1, video, textbox_in, first_run, state, images_tensor): flag = 1 image1 = image1 if image1 else "none" video = video if video else "none" if type(state) is not Conversation: state = init_conv() images_tensor = [[], []] first_run = False if len(state.messages) > 0 else True text_en_in = textbox_in.replace("picture", "image") output, input_prompt, prompt = motionllm(args, video, text_en_in) text_en_out = output textbox_out = text_en_out show_images = "" if os.path.exists(image1): filename = save_image_to_local(image1) show_images += f'' if os.path.exists(video): filename = save_video_to_local(video) show_images += f'' show_images = textbox_in + "\n" + show_images state.append_message(output, input_prompt, prompt, show_images) # torch.cuda.empty_cache() return (state, state.to_gradio_chatbot(show_images, output), False, gr.update(value=None, interactive=True), images_tensor, gr.update(value=image1 if os.path.exists(image1) else None, interactive=True), gr.update(value=video if os.path.exists(video) else None, interactive=True)) def regenerate(state): if len(state.messages) > 0: tobot = state.to_gradio_chatbot() tobot[-1][1] = None textbox = state.messages[-1][1] state.messages.pop(-1) return state, tobot, False, textbox return (state, [], True) def clear_history(state): state = init_conv() try: tgt = state.to_gradio_chatbot() except: tgt = [None, None] return (gr.update(value=None, interactive=True), gr.update(value=None, interactive=True),\ gr.update(value=None, interactive=True),\ True, state, tgt, [[], []]) def get_md5(file_path): hash_md5 = hashlib.md5() with open(file_path, "rb") as f: for chunk in iter(lambda: f.read(4096), b""): hash_md5.update(chunk) return hash_md5.hexdigest() def logging_up(video, state): try: state.get_info() except: return False action = "upvote" # Get the current time current_time = str(time.time()) # Create an md5 object hash_object = hashlib.md5(current_time.encode()) # Get the hexadecimal representation of the hash md5_hash = get_md5(video) + "-" + hash_object.hexdigest() command = f"cp {video} ./feedback/{action}/mp4/{md5_hash}.mp4" os.system(command) with open (f"./feedback/{action}/txt/{md5_hash}.txt", "w") as f: out, prp = state.get_info() f.write(f"==========\nPrompt: {prp}\n==========\nOutput: {out}==========\n") return True def logging_down(video, state): try: state.get_info() except: return False action = "downvote" # Get the current time current_time = str(time.time()) # Create an md5 object hash_object = hashlib.md5(current_time.encode()) # Get the hexadecimal representation of the hash md5_hash = get_md5(video) + "-" + hash_object.hexdigest() command = f"cp {video} ./feedback/{action}/mp4/{md5_hash}.mp4" os.system(command) with open (f"./feedback/{action}/txt/{md5_hash}.txt", "w") as f: out, prp = state.get_info() f.write(f"==========\nPrompt: {prp}\n==========\nOutput: {out}==========\n") return True torch.set_float32_matmul_precision("high") warnings.filterwarnings('ignore') args = option.get_args_parser() args.lora_path = "motionllm-ckpt/v-1-0/lora.pth" args.mlp_path = "motionllm-ckpt/v-1-0/linear.pth" conv_mode = "llava_v1" model_path = 'LanguageBind/Video-LLaVA-7B' device = 'cuda' load_8bit = False load_4bit = True dtype = torch.float16 if not os.path.exists("temp"): os.makedirs("temp") lora_path = Path(args.lora_path) pretrained_llm_path = Path(f"./checkpoints/vicuna-7b-v1.5/lit_model.pth") tokenizer_llm_path = Path("./checkpoints/vicuna-7b-v1.5/tokenizer.model") # assert lora_path.is_file() assert pretrained_llm_path.is_file() assert tokenizer_llm_path.is_file() accelerator = "auto" fabric = L.Fabric(accelerator=accelerator, devices=1) dtype = "float32" dt = getattr(torch, dtype, None) if not isinstance(dt, torch.dtype): raise ValueError(f"{dtype} is not a valid dtype.") dtype = dt quantize = None t0 = time.time() mlp_path = args.mlp_path pretrained_checkpoint_mlp = torch.load(mlp_path, map_location='cpu') with EmptyInitOnDevice( device=fabric.device, dtype=dtype, quantization_mode=quantize ), lora(r=args.lora_r, alpha=args.lora_alpha, dropout=args.lora_dropout, enabled=True): checkpoint_dir = Path("checkpoints/vicuna-7b-v1.5") lora_query = True lora_key = False lora_value = True lora_projection = False lora_mlp = False lora_head = False config = Config.from_name( name=checkpoint_dir.name, r=args.lora_r, alpha=args.lora_alpha, dropout=args.lora_dropout, to_query=lora_query, to_key=lora_key, to_value=lora_value, to_projection=lora_projection, to_mlp=lora_mlp, to_head=lora_head, ) model = GPT(config).bfloat16() X = ['Video'] mm_backbone_mlp_model, processor = get_processor(X, args, 'cuda', pretrained_checkpoint_mlp, model_path = 'LanguageBind/Video-LLaVA-7B') video_processor = processor['video'] linear_proj = mm_backbone_mlp_model.mm_projector # 1. Load the pretrained weights pretrained_llm_checkpoint = lazy_load(pretrained_llm_path) for key, value in pretrained_llm_checkpoint.items(): if isinstance(value, torch.Tensor): pretrained_llm_checkpoint[key] = value.to('cpu') # 2. Load the fine-tuned LoRA weights lora_checkpoint = lazy_load(lora_path) for key, value in lora_checkpoint.items(): if isinstance(value, torch.Tensor): lora_checkpoint[key] = value.to('cpu') # 3. merge the two checkpoints model_state_dict = {**pretrained_llm_checkpoint, **lora_checkpoint} model.load_state_dict(model_state_dict, strict=True) print('Load llm base model from', pretrained_llm_path) print('Load lora model from', lora_path) # load mlp again, to en sure, not neccessary actually linear_proj.load_state_dict(pretrained_checkpoint_mlp) linear_proj = linear_proj.cuda() print('Load mlp model again from', mlp_path) print(f"Time to load model: {time.time() - t0:.02f} seconds.", file=sys.stderr) model.eval() model = model.cuda() linear_proj.eval() tokenizer = Tokenizer(tokenizer_llm_path) print('Load tokenizer from', tokenizer_llm_path) print(torch.cuda.memory_allocated()) print(torch.cuda.max_memory_allocated()) app = FastAPI() textbox = gr.Textbox( show_label=False, placeholder="Enter text and press ENTER", container=False ) with gr.Blocks(title='MotionLLM', theme=gr.themes.Default(), css=block_css) as demo: gr.Markdown(title_markdown) state = gr.State() buffer_ = gr.State() first_run = gr.State() images_tensor = gr.State() with gr.Row(): with gr.Column(scale=3): image1 = gr.State() video = gr.Video(label="Input Video") cur_dir = os.path.dirname(os.path.abspath(__file__)) gr.Examples( examples=[ [ f"{cur_dir}/examples/Play_Electric_guitar_16_clip1.mp4", "why is the girl so happy", ], [ f"{cur_dir}/examples/guoyoucai.mov", "what is the feeling of him", ], [ f"{cur_dir}/examples/sprint_run_18_clip1.mp4", "Why is the man running so fast?", ], [ f"{cur_dir}/examples/lift_weight.mp4", "Assume you are a fitness coach, refer to the video of the professional athlete, please analyze specific action essentials in steps and give detailed instruction.", ], [ f"{cur_dir}/examples/Shaolin_Kung_Fu_Wushu_Selfdefense_Sword_Form_Session_22_clip3.mp4", "wow, can you teach me the motion, step by step in detail", ], [ f"{cur_dir}/examples/mabaoguo.mp4", "why is the video funny?", ], [ f"{cur_dir}/examples/COBRA_PUSH_UPS_clip2.mp4", "describe the body movement of the woman", ], [ f"{cur_dir}/examples/sample_demo_1.mp4", "Why is this video interesting?", ], ], inputs=[video, textbox], ) with gr.Column(scale=7): chatbot = gr.Chatbot(label="MotionLLM", bubble_full_width=True, height=875) with gr.Row(): with gr.Column(scale=8): textbox.render() with gr.Column(scale=1, min_width=50): submit_btn = gr.Button( value="Send", variant="primary", interactive=True ) with gr.Row(elem_id="buttons") as button_row: upvote_btn = gr.Button(value="πŸ‘ Upvote", interactive=True) downvote_btn = gr.Button(value="πŸ‘Ž Downvote", interactive=True) flag_btn = gr.Button(value="⚠️ Flag", interactive=True) # stop_btn = gr.Button(value="⏹️ Stop Generation", interactive=False) regenerate_btn = gr.Button(value="πŸ”„ Regenerate", interactive=True) clear_btn = gr.Button(value="πŸ—‘οΈ Clear history", interactive=True) gr.Markdown(tos_markdown) gr.Markdown(learn_more_markdown) tmp = gr.State() upvote_btn.click(logging_up, [video, state], [tmp]) downvote_btn.click(logging_down, [video, state], [tmp]) submit_btn.click(generate, [image1, video, textbox, first_run, state, images_tensor], [state, chatbot, first_run, textbox, images_tensor, image1, video]) regenerate_btn.click(regenerate, [state], [state, chatbot, first_run, textbox]).then( generate, [image1, video, textbox, first_run, state, images_tensor], [state, chatbot, first_run, textbox, images_tensor, image1, video]) clear_btn.click(clear_history, [state], [image1, video, textbox, first_run, state, chatbot, images_tensor]) # app = gr.mount_gradio_app(app, demo, path="/") # uvicorn.run(app) demo.launch()