Spaces:
Runtime error
Runtime error
import os | |
import pickle | |
import torch | |
from PIL import Image | |
from diffusers import ( | |
StableDiffusionPipeline, | |
StableDiffusionImg2ImgPipeline, | |
FluxPipeline, | |
DiffusionPipeline, | |
DPMSolverMultistepScheduler, | |
) | |
from transformers import ( | |
pipeline as transformers_pipeline, | |
AutoModelForCausalLM, | |
AutoTokenizer, | |
GPT2Tokenizer, | |
GPT2Model, | |
AutoModel | |
) | |
from audiocraft.models import musicgen | |
import gradio as gr | |
from huggingface_hub import snapshot_download, HfApi, HfFolder | |
import io | |
import time | |
from tqdm import tqdm | |
from google.cloud import storage | |
import json | |
hf_token = os.getenv("HF_TOKEN") | |
gcs_credentials = json.loads(os.getenv("GCS_CREDENTIALS")) | |
gcs_bucket_name = os.getenv("GCS_BUCKET_NAME") | |
HfFolder.save_token(hf_token) | |
storage_client = storage.Client.from_service_account_info(gcs_credentials) | |
bucket = storage_client.bucket(gcs_bucket_name) | |
def load_object_from_gcs(blob_name): | |
blob = bucket.blob(blob_name) | |
if blob.exists(): | |
return pickle.loads(blob.download_as_bytes()) | |
return None | |
def save_object_to_gcs(blob_name, obj): | |
blob = bucket.blob(blob_name) | |
blob.upload_from_string(pickle.dumps(obj)) | |
def get_model_or_download(model_id, blob_name, loader_func): | |
model = load_object_from_gcs(blob_name) | |
if model: | |
return model | |
try: | |
with tqdm(total=1, desc=f"Downloading {model_id}") as pbar: | |
model = loader_func(model_id, torch_dtype=torch.float16) | |
pbar.update(1) | |
save_object_to_gcs(blob_name, model) | |
return model | |
except Exception as e: | |
print(f"Failed to load or save model: {e}") | |
return None | |
def generate_image(prompt): | |
blob_name = f"diffusers/generated_image:{prompt}" | |
image_bytes = load_object_from_gcs(blob_name) | |
if not image_bytes: | |
try: | |
with tqdm(total=1, desc="Generating image") as pbar: | |
image = text_to_image_pipeline(prompt).images[0] | |
pbar.update(1) | |
buffered = io.BytesIO() | |
image.save(buffered, format="JPEG") | |
image_bytes = buffered.getvalue() | |
save_object_to_gcs(blob_name, image_bytes) | |
except Exception as e: | |
print(f"Failed to generate image: {e}") | |
return None | |
return image_bytes | |
def edit_image_with_prompt(image_bytes, prompt, strength=0.75): | |
blob_name = f"diffusers/edited_image:{prompt}:{strength}" | |
edited_image_bytes = load_object_from_gcs(blob_name) | |
if not edited_image_bytes: | |
try: | |
image = Image.open(io.BytesIO(image_bytes)) | |
with tqdm(total=1, desc="Editing image") as pbar: | |
edited_image = img2img_pipeline( | |
prompt=prompt, image=image, strength=strength | |
).images[0] | |
pbar.update(1) | |
buffered = io.BytesIO() | |
edited_image.save(buffered, format="JPEG") | |
edited_image_bytes = buffered.getvalue() | |
save_object_to_gcs(blob_name, edited_image_bytes) | |
except Exception as e: | |
print(f"Failed to edit image: {e}") | |
return None | |
return edited_image_bytes | |
def generate_song(prompt, duration=10): | |
blob_name = f"music/generated_song:{prompt}:{duration}" | |
song_bytes = load_object_from_gcs(blob_name) | |
if not song_bytes: | |
try: | |
with tqdm(total=1, desc="Generating song") as pbar: | |
song = music_gen(prompt, duration=duration) | |
pbar.update(1) | |
song_bytes = song[0].getvalue() | |
save_object_to_gcs(blob_name, song_bytes) | |
except Exception as e: | |
print(f"Failed to generate song: {e}") | |
return None | |
return song_bytes | |
def generate_text(prompt): | |
blob_name = f"transformers/generated_text:{prompt}" | |
text = load_object_from_gcs(blob_name) | |
if not text: | |
try: | |
with tqdm(total=1, desc="Generating text") as pbar: | |
text = text_gen_pipeline(prompt, max_new_tokens=256)[0][ | |
"generated_text" | |
].strip() | |
pbar.update(1) | |
save_object_to_gcs(blob_name, text) | |
except Exception as e: | |
print(f"Failed to generate text: {e}") | |
return None | |
return text | |
def generate_flux_image(prompt): | |
blob_name = f"diffusers/generated_flux_image:{prompt}" | |
flux_image_bytes = load_object_from_gcs(blob_name) | |
if not flux_image_bytes: | |
try: | |
with tqdm(total=1, desc="Generating FLUX image") as pbar: | |
flux_image = flux_pipeline( | |
prompt, | |
guidance_scale=0.0, | |
num_inference_steps=4, | |
max_length=256, | |
generator=torch.Generator("cpu").manual_seed(0), | |
).images[0] | |
pbar.update(1) | |
buffered = io.BytesIO() | |
flux_image.save(buffered, format="JPEG") | |
flux_image_bytes = buffered.getvalue() | |
save_object_to_gcs(blob_name, flux_image_bytes) | |
except Exception as e: | |
print(f"Failed to generate flux image: {e}") | |
return None | |
return flux_image_bytes | |
def generate_code(prompt): | |
blob_name = f"transformers/generated_code:{prompt}" | |
code = load_object_from_gcs(blob_name) | |
if not code: | |
try: | |
with tqdm(total=1, desc="Generating code") as pbar: | |
inputs = starcoder_tokenizer.encode(prompt, return_tensors="pt") | |
outputs = starcoder_model.generate(inputs, max_new_tokens=256) | |
code = starcoder_tokenizer.decode(outputs[0]) | |
pbar.update(1) | |
save_object_to_gcs(blob_name, code) | |
except Exception as e: | |
print(f"Failed to generate code: {e}") | |
return None | |
return code | |
def test_model_meta_llama(): | |
blob_name = "transformers/meta_llama_test_response" | |
response = load_object_from_gcs(blob_name) | |
if not response: | |
try: | |
messages = [ | |
{ | |
"role": "system", | |
"content": "You are a pirate chatbot who always responds in pirate speak!", | |
}, | |
{"role": "user", "content": "Who are you?"}, | |
] | |
with tqdm(total=1, desc="Testing Meta-Llama") as pbar: | |
response = meta_llama_pipeline(messages, max_new_tokens=256)[0][ | |
"generated_text" | |
].strip() | |
pbar.update(1) | |
save_object_to_gcs(blob_name, response) | |
except Exception as e: | |
print(f"Failed to test Meta-Llama: {e}") | |
return None | |
return response | |
def generate_image_sdxl(prompt): | |
blob_name = f"diffusers/generated_image_sdxl:{prompt}" | |
image_bytes = load_object_from_gcs(blob_name) | |
if not image_bytes: | |
try: | |
with tqdm(total=1, desc="Generating SDXL image") as pbar: | |
image = base( | |
prompt=prompt, | |
num_inference_steps=40, | |
denoising_end=0.8, | |
output_type="latent", | |
).images | |
image = refiner( | |
prompt=prompt, | |
num_inference_steps=40, | |
denoising_start=0.8, | |
image=image, | |
).images[0] | |
pbar.update(1) | |
buffered = io.BytesIO() | |
image.save(buffered, format="JPEG") | |
image_bytes = buffered.getvalue() | |
save_object_to_gcs(blob_name, image_bytes) | |
except Exception as e: | |
print(f"Failed to generate SDXL image: {e}") | |
return None | |
return image_bytes | |
def generate_musicgen_melody(prompt): | |
blob_name = f"music/generated_musicgen_melody:{prompt}" | |
song_bytes = load_object_from_gcs(blob_name) | |
if not song_bytes: | |
try: | |
with tqdm(total=1, desc="Generating MusicGen melody") as pbar: | |
melody, sr = torchaudio.load("./assets/bach.mp3") | |
wav = music_gen_melody.generate_with_chroma( | |
[prompt], melody[None].expand(3, -1, -1), sr | |
) | |
pbar.update(1) | |
song_bytes = wav[0].getvalue() | |
save_object_to_gcs(blob_name, song_bytes) | |
except Exception as e: | |
print(f"Failed to generate MusicGen melody: {e}") | |
return None | |
return song_bytes | |
def generate_musicgen_large(prompt): | |
blob_name = f"music/generated_musicgen_large:{prompt}" | |
song_bytes = load_object_from_gcs(blob_name) | |
if not song_bytes: | |
try: | |
with tqdm(total=1, desc="Generating MusicGen large") as pbar: | |
wav = music_gen_large.generate([prompt]) | |
pbar.update(1) | |
song_bytes = wav[0].getvalue() | |
save_object_to_gcs(blob_name, song_bytes) | |
except Exception as e: | |
print(f"Failed to generate MusicGen large: {e}") | |
return None | |
return song_bytes | |
def transcribe_audio(audio_sample): | |
blob_name = f"transformers/transcribed_audio:{hash(audio_sample.tobytes())}" | |
text = load_object_from_gcs(blob_name) | |
if not text: | |
try: | |
with tqdm(total=1, desc="Transcribing audio") as pbar: | |
text = whisper_pipeline(audio_sample.copy(), batch_size=8)["text"] | |
pbar.update(1) | |
save_object_to_gcs(blob_name, text) | |
except Exception as e: | |
print(f"Failed to transcribe audio: {e}") | |
return None | |
return text | |
def generate_mistral_instruct(prompt): | |
blob_name = f"transformers/generated_mistral_instruct:{prompt}" | |
response = load_object_from_gcs(blob_name) | |
if not response: | |
try: | |
conversation = [{"role": "user", "content": prompt}] | |
with tqdm(total=1, desc="Generating Mistral Instruct response") as pbar: | |
inputs = mistral_instruct_tokenizer.apply_chat_template( | |
conversation, | |
tools=tools, | |
add_generation_prompt=True, | |
return_dict=True, | |
return_tensors="pt", | |
) | |
outputs = mistral_instruct_model.generate( | |
**inputs, max_new_tokens=1000 | |
) | |
response = mistral_instruct_tokenizer.decode( | |
outputs[0], skip_special_tokens=True | |
) | |
pbar.update(1) | |
save_object_to_gcs(blob_name, response) | |
except Exception as e: | |
print(f"Failed to generate Mistral Instruct response: {e}") | |
return None | |
return response | |
def generate_mistral_nemo(prompt): | |
blob_name = f"transformers/generated_mistral_nemo:{prompt}" | |
response = load_object_from_gcs(blob_name) | |
if not response: | |
try: | |
conversation = [{"role": "user", "content": prompt}] | |
with tqdm(total=1, desc="Generating Mistral Nemo response") as pbar: | |
inputs = mistral_nemo_tokenizer.apply_chat_template( | |
conversation, | |
tools=tools, | |
add_generation_prompt=True, | |
return_dict=True, | |
return_tensors="pt", | |
) | |
outputs = mistral_nemo_model.generate(**inputs, max_new_tokens=1000) | |
response = mistral_nemo_tokenizer.decode( | |
outputs[0], skip_special_tokens=True | |
) | |
pbar.update(1) | |
save_object_to_gcs(blob_name, response) | |
except Exception as e: | |
print(f"Failed to generate Mistral Nemo response: {e}") | |
return None | |
return response | |
def generate_gpt2_xl(prompt): | |
blob_name = f"transformers/generated_gpt2_xl:{prompt}" | |
response = load_object_from_gcs(blob_name) | |
if not response: | |
try: | |
with tqdm(total=1, desc="Generating GPT-2 XL response") as pbar: | |
inputs = gpt2_xl_tokenizer(prompt, return_tensors="pt") | |
outputs = gpt2_xl_model(**inputs) | |
response = gpt2_xl_tokenizer.decode( | |
outputs[0][0], skip_special_tokens=True | |
) | |
pbar.update(1) | |
save_object_to_gcs(blob_name, response) | |
except Exception as e: | |
print(f"Failed to generate GPT-2 XL response: {e}") | |
return None | |
return response | |
def store_user_question(question): | |
blob_name = "user_questions.txt" | |
blob = bucket.blob(blob_name) | |
if blob.exists(): | |
blob.download_to_filename("user_questions.txt") | |
with open("user_questions.txt", "a") as f: | |
f.write(question + "\n") | |
blob.upload_from_filename("user_questions.txt") | |
def retrain_models(): | |
pass | |
def generate_text_to_video_ms_1_7b(prompt, num_frames=200): | |
blob_name = f"diffusers/text_to_video_ms_1_7b:{prompt}:{num_frames}" | |
video_bytes = load_object_from_gcs(blob_name) | |
if not video_bytes: | |
try: | |
with tqdm(total=1, desc="Generating video") as pbar: | |
video_frames = text_to_video_ms_1_7b_pipeline( | |
prompt, num_inference_steps=25, num_frames=num_frames | |
).frames | |
pbar.update(1) | |
video_path = export_to_video(video_frames) | |
with open(video_path, "rb") as f: | |
video_bytes = f.read() | |
save_object_to_gcs(blob_name, video_bytes) | |
os.remove(video_path) | |
except Exception as e: | |
print(f"Failed to generate video: {e}") | |
return None | |
return video_bytes | |
def generate_text_to_video_ms_1_7b_short(prompt): | |
blob_name = f"diffusers/text_to_video_ms_1_7b_short:{prompt}" | |
video_bytes = load_object_from_gcs(blob_name) | |
if not video_bytes: | |
try: | |
with tqdm(total=1, desc="Generating short video") as pbar: | |
video_frames = text_to_video_ms_1_7b_short_pipeline( | |
prompt, num_inference_steps=25 | |
).frames | |
pbar.update(1) | |
video_path = export_to_video(video_frames) | |
with open(video_path, "rb") as f: | |
video_bytes = f.read() | |
save_object_to_gcs(blob_name, video_bytes) | |
os.remove(video_path) | |
except Exception as e: | |
print(f"Failed to generate short video: {e}") | |
return None | |
return video_bytes | |
text_to_image_pipeline = get_model_or_download( | |
"stabilityai/stable-diffusion-2", | |
"diffusers/text_to_image_model", | |
StableDiffusionPipeline.from_pretrained, | |
) | |
img2img_pipeline = get_model_or_download( | |
"CompVis/stable-diffusion-v1-4", | |
"diffusers/img2img_model", | |
StableDiffusionImg2ImgPipeline.from_pretrained, | |
) | |
flux_pipeline = get_model_or_download( | |
"black-forest-labs/FLUX.1-schnell", | |
"diffusers/flux_model", | |
FluxPipeline.from_pretrained, | |
) | |
text_gen_pipeline = transformers_pipeline( | |
"text-generation", model="google/gemma-2-9b", tokenizer="google/gemma-2-9b" | |
) | |
music_gen = ( | |
load_object_from_gcs("music/music_gen") | |
or musicgen.MusicGen.get_pretrained("melody") | |
) | |
meta_llama_pipeline = get_model_or_download( | |
"meta-llama/Meta-Llama-3.1-8B-Instruct", | |
"transformers/meta_llama_model", | |
transformers_pipeline, | |
) | |
starcoder_model = AutoModelForCausalLM.from_pretrained("bigcode/starcoder") | |
starcoder_tokenizer = AutoTokenizer.from_pretrained("bigcode/starcoder") | |
base = DiffusionPipeline.from_pretrained( | |
"stabilityai/stable-diffusion-xl-base-1.0", | |
torch_dtype=torch.float16, | |
variant="fp16", | |
use_safetensors=True, | |
) | |
refiner = DiffusionPipeline.from_pretrained( | |
"stabilityai/stable-diffusion-xl-refiner-1.0", | |
text_encoder_2=base.text_encoder_2, | |
vae=base.vae, | |
torch_dtype=torch.float16, | |
use_safetensors=True, | |
variant="fp16", | |
) | |
music_gen_melody = musicgen.MusicGen.get_pretrained("melody") | |
music_gen_melody.set_generation_params(duration=8) | |
music_gen_large = musicgen.MusicGen.get_pretrained("large") | |
music_gen_large.set_generation_params(duration=8) | |
whisper_pipeline = transformers_pipeline( | |
"automatic-speech-recognition", | |
model="openai/whisper-small", | |
chunk_length_s=30, | |
) | |
mistral_instruct_model = AutoModelForCausalLM.from_pretrained( | |
"mistralai/Mistral-Large-Instruct-2407", | |
torch_dtype=torch.bfloat16, | |
device_map="auto", | |
) | |
mistral_instruct_tokenizer = AutoTokenizer.from_pretrained( | |
"mistralai/Mistral-Large-Instruct-2407" | |
) | |
mistral_nemo_model = AutoModelForCausalLM.from_pretrained( | |
"mistralai/Mistral-Nemo-Instruct-2407", | |
torch_dtype=torch.bfloat16, | |
device_map="auto", | |
) | |
mistral_nemo_tokenizer = AutoTokenizer.from_pretrained( | |
"mistralai/Mistral-Nemo-Instruct-2407" | |
) | |
gpt2_xl_tokenizer = GPT2Tokenizer.from_pretrained("gpt2-xl") | |
gpt2_xl_model = GPT2Model.from_pretrained("gpt2-xl") | |
llama_3_groq_70b_tool_use_pipeline = transformers_pipeline( | |
"text-generation", model="Groq/Llama-3-Groq-70B-Tool-Use" | |
) | |
phi_3_5_mini_instruct_model = AutoModelForCausalLM.from_pretrained( | |
"microsoft/Phi-3.5-mini-instruct", torch_dtype="auto", trust_remote_code=True | |
) | |
phi_3_5_mini_instruct_tokenizer = AutoTokenizer.from_pretrained( | |
"microsoft/Phi-3.5-mini-instruct" | |
) | |
phi_3_5_mini_instruct_pipeline = transformers_pipeline( | |
"text-generation", | |
model=phi_3_5_mini_instruct_model, | |
tokenizer=phi_3_5_mini_instruct_tokenizer, | |
) | |
meta_llama_3_1_8b_pipeline = transformers_pipeline( | |
"text-generation", | |
model="meta-llama/Meta-Llama-3.1-8B", | |
model_kwargs={"torch_dtype": torch.bfloat16}, | |
) | |
meta_llama_3_1_70b_pipeline = transformers_pipeline( | |
"text-generation", | |
model="meta-llama/Meta-Llama-3.1-70B", | |
model_kwargs={"torch_dtype": torch.bfloat16}, | |
) | |
medical_text_summarization_pipeline = transformers_pipeline( | |
"summarization", model="your/medical_text_summarization_model" | |
) | |
bart_large_cnn_summarization_pipeline = transformers_pipeline( | |
"summarization", model="facebook/bart-large-cnn" | |
) | |
flux_1_dev_pipeline = FluxPipeline.from_pretrained( | |
"black-forest-labs/FLUX.1-dev", torch_dtype=torch.bfloat16 | |
) | |
flux_1_dev_pipeline.enable_model_cpu_offload() | |
gemma_2_9b_pipeline = transformers_pipeline("text-generation", model="google/gemma-2-9b") | |
gemma_2_9b_it_pipeline = transformers_pipeline( | |
"text-generation", | |
model="google/gemma-2-9b-it", | |
model_kwargs={"torch_dtype": torch.bfloat16}, | |
) | |
gemma_2_2b_pipeline = transformers_pipeline("text-generation", model="google/gemma-2-2b") | |
gemma_2_2b_it_pipeline = transformers_pipeline( | |
"text-generation", | |
model="google/gemma-2-2b-it", | |
model_kwargs={"torch_dtype": torch.bfloat16}, | |
) | |
gemma_2_27b_tokenizer = AutoTokenizer.from_pretrained("google/gemma-2-27b") | |
gemma_2_27b_model = AutoModelForCausalLM.from_pretrained("google/gemma-2-27b") | |
gemma_2_27b_it_pipeline = transformers_pipeline( | |
"text-generation", | |
model="google/gemma-2-27b-it", | |
model_kwargs={"torch_dtype": torch.bfloat16}, | |
) | |
text_to_video_ms_1_7b_pipeline = DiffusionPipeline.from_pretrained( | |
"damo-vilab/text-to-video-ms-1.7b", torch_dtype=torch.float16, variant="fp16" | |
) | |
text_to_video_ms_1_7b_pipeline.scheduler = DPMSolverMultistepScheduler.from_config( | |
text_to_video_ms_1_7b_pipeline.scheduler.config | |
) | |
text_to_video_ms_1_7b_pipeline.enable_model_cpu_offload() | |
text_to_video_ms_1_7b_pipeline.enable_vae_slicing() | |
text_to_video_ms_1_7b_short_pipeline = DiffusionPipeline.from_pretrained( | |
"damo-vilab/text-to-video-ms-1.7b", torch_dtype=torch.float16, variant="fp16" | |
) | |
text_to_video_ms_1_7b_short_pipeline.scheduler = ( | |
DPMSolverMultistepScheduler.from_config( | |
text_to_video_ms_1_7b_short_pipeline.scheduler.config | |
) | |
) | |
text_to_video_ms_1_7b_short_pipeline.enable_model_cpu_offload() | |
tools = [] | |
gen_image_tab = gr.Interface( | |
fn=generate_image, | |
inputs=gr.Textbox(label="Prompt:"), | |
outputs=gr.Image(type="pil"), | |
title="Generate Image", | |
) | |
edit_image_tab = gr.Interface( | |
fn=edit_image_with_prompt, | |
inputs=[ | |
gr.Image(type="pil", label="Image:"), | |
gr.Textbox(label="Prompt:"), | |
gr.Slider(0.1, 1.0, 0.75, step=0.05, label="Strength:"), | |
], | |
outputs=gr.Image(type="pil"), | |
title="Edit Image", | |
) | |
generate_song_tab = gr.Interface( | |
fn=generate_song, | |
inputs=[ | |
gr.Textbox(label="Prompt:"), | |
gr.Slider(5, 60, 10, step=1, label="Duration (s):"), | |
], | |
outputs=gr.Audio(type="numpy"), | |
title="Generate Songs", | |
) | |
generate_text_tab = gr.Interface( | |
fn=generate_text, | |
inputs=gr.Textbox(label="Prompt:"), | |
outputs=gr.Textbox(label="Generated Text:"), | |
title="Generate Text", | |
) | |
generate_flux_image_tab = gr.Interface( | |
fn=generate_flux_image, | |
inputs=gr.Textbox(label="Prompt:"), | |
outputs=gr.Image(type="pil"), | |
title="Generate FLUX Images", | |
) | |
generate_code_tab = gr.Interface( | |
fn=generate_code, | |
inputs=gr.Textbox(label="Prompt:"), | |
outputs=gr.Textbox(label="Generated Code:"), | |
title="Generate Code", | |
) | |
model_meta_llama_test_tab = gr.Interface( | |
fn=test_model_meta_llama, | |
inputs=None, | |
outputs=gr.Textbox(label="Model Output:"), | |
title="Test Meta-Llama", | |
) | |
generate_image_sdxl_tab = gr.Interface( | |
fn=generate_image_sdxl, | |
inputs=gr.Textbox(label="Prompt:"), | |
outputs=gr.Image(type="pil"), | |
title="Generate SDXL Image", | |
) | |
generate_musicgen_melody_tab = gr.Interface( | |
fn=generate_musicgen_melody, | |
inputs=gr.Textbox(label="Prompt:"), | |
outputs=gr.Audio(type="numpy"), | |
title="Generate MusicGen Melody", | |
) | |
generate_musicgen_large_tab = gr.Interface( | |
fn=generate_musicgen_large, | |
inputs=gr.Textbox(label="Prompt:"), | |
outputs=gr.Audio(type="numpy"), | |
title="Generate MusicGen Large", | |
) | |
transcribe_audio_tab = gr.Interface( | |
fn=transcribe_audio, | |
inputs=gr.Audio(type="numpy", label="Audio Sample:"), | |
outputs=gr.Textbox(label="Transcribed Text:"), | |
title="Transcribe Audio", | |
) | |
generate_mistral_instruct_tab = gr.Interface( | |
fn=generate_mistral_instruct, | |
inputs=gr.Textbox(label="Prompt:"), | |
outputs=gr.Textbox(label="Mistral Instruct Response:"), | |
title="Generate Mistral Instruct Response", | |
) | |
generate_mistral_nemo_tab = gr.Interface( | |
fn=generate_mistral_nemo, | |
inputs=gr.Textbox(label="Prompt:"), | |
outputs=gr.Textbox(label="Mistral Nemo Response:"), | |
title="Generate Mistral Nemo Response", | |
) | |
generate_gpt2_xl_tab = gr.Interface( | |
fn=generate_gpt2_xl, | |
inputs=gr.Textbox(label="Prompt:"), | |
outputs=gr.Textbox(label="GPT-2 XL Response:"), | |
title="Generate GPT-2 XL Response", | |
) | |
answer_question_minicpm_tab = gr.Interface( | |
fn=answer_question_minicpm, | |
inputs=[ | |
gr.Image(type="pil", label="Image:"), | |
gr.Textbox(label="Question:"), | |
], | |
outputs=gr.Textbox(label="MiniCPM Answer:"), | |
title="Answer Question with MiniCPM", | |
) | |
llama_3_groq_70b_tool_use_tab = gr.Interface( | |
fn=llama_3_groq_70b_tool_use_pipeline, | |
inputs=[gr.Textbox(label="Prompt:")], | |
outputs=gr.Textbox(label="Llama 3 Groq 70B Tool Use Response:"), | |
title="Llama 3 Groq 70B Tool Use", | |
) | |
phi_3_5_mini_instruct_tab = gr.Interface( | |
fn=phi_3_5_mini_instruct_pipeline, | |
inputs=[gr.Textbox(label="Prompt:")], | |
outputs=gr.Textbox(label="Phi 3.5 Mini Instruct Response:"), | |
title="Phi 3.5 Mini Instruct", | |
) | |
meta_llama_3_1_8b_tab = gr.Interface( | |
fn=meta_llama_3_1_8b_pipeline, | |
inputs=[gr.Textbox(label="Prompt:")], | |
outputs=gr.Textbox(label="Meta Llama 3.1 8B Response:"), | |
title="Meta Llama 3.1 8B", | |
) | |
meta_llama_3_1_70b_tab = gr.Interface( | |
fn=meta_llama_3_1_70b_pipeline, | |
inputs=[gr.Textbox(label="Prompt:")], | |
outputs=gr.Textbox(label="Meta Llama 3.1 70B Response:"), | |
title="Meta Llama 3.1 70B", | |
) | |
medical_text_summarization_tab = gr.Interface( | |
fn=medical_text_summarization_pipeline, | |
inputs=[gr.Textbox(label="Medical Document:")], | |
outputs=gr.Textbox(label="Medical Text Summarization:"), | |
title="Medical Text Summarization", | |
) | |
bart_large_cnn_summarization_tab = gr.Interface( | |
fn=bart_large_cnn_summarization_pipeline, | |
inputs=[gr.Textbox(label="Article:")], | |
outputs=gr.Textbox(label="Bart Large CNN Summarization:"), | |
title="Bart Large CNN Summarization", | |
) | |
flux_1_dev_tab = gr.Interface( | |
fn=flux_1_dev_pipeline, | |
inputs=[gr.Textbox(label="Prompt:")], | |
outputs=gr.Image(type="pil"), | |
title="FLUX 1 Dev", | |
) | |
gemma_2_9b_tab = gr.Interface( | |
fn=gemma_2_9b_pipeline, | |
inputs=[gr.Textbox(label="Prompt:")], | |
outputs=gr.Textbox(label="Gemma 2 9B Response:"), | |
title="Gemma 2 9B", | |
) | |
gemma_2_9b_it_tab = gr.Interface( | |
fn=gemma_2_9b_it_pipeline, | |
inputs=[gr.Textbox(label="Prompt:")], | |
outputs=gr.Textbox(label="Gemma 2 9B IT Response:"), | |
title="Gemma 2 9B IT", | |
) | |
gemma_2_2b_tab = gr.Interface( | |
fn=gemma_2_2b_pipeline, | |
inputs=[gr.Textbox(label="Prompt:")], | |
outputs=gr.Textbox(label="Gemma 2 2B Response:"), | |
title="Gemma 2 2B", | |
) | |
gemma_2_2b_it_tab = gr.Interface( | |
fn=gemma_2_2b_it_pipeline, | |
inputs=[gr.Textbox(label="Prompt:")], | |
outputs=gr.Textbox(label="Gemma 2 2B IT Response:"), | |
title="Gemma 2 2B IT", | |
) | |
def generate_gemma_2_27b(prompt): | |
input_ids = gemma_2_27b_tokenizer(prompt, return_tensors="pt") | |
outputs = gemma_2_27b_model.generate(**input_ids, max_new_tokens=32) | |
return gemma_2_27b_tokenizer.decode(outputs[0]) | |
gemma_2_27b_tab = gr.Interface( | |
fn=generate_gemma_2_27b, | |
inputs=[gr.Textbox(label="Prompt:")], | |
outputs=gr.Textbox(label="Gemma 2 27B Response:"), | |
title="Gemma 2 27B", | |
) | |
gemma_2_27b_it_tab = gr.Interface( | |
fn=gemma_2_27b_it_pipeline, | |
inputs=[gr.Textbox(label="Prompt:")], | |
outputs=gr.Textbox(label="Gemma 2 27B IT Response:"), | |
title="Gemma 2 27B IT", | |
) | |
text_to_video_ms_1_7b_tab = gr.Interface( | |
fn=generate_text_to_video_ms_1_7b, | |
inputs=[ | |
gr.Textbox(label="Prompt:"), | |
gr.Slider(50, 200, 200, step=1, label="Number of Frames:"), | |
], | |
outputs=gr.Video(), | |
title="Text to Video MS 1.7B", | |
) | |
text_to_video_ms_1_7b_short_tab = gr.Interface( | |
fn=generate_text_to_video_ms_1_7b_short, | |
inputs=[gr.Textbox(label="Prompt:")], | |
outputs=gr.Video(), | |
title="Text to Video MS 1.7B Short", | |
) | |
app = gr.TabbedInterface( | |
[ | |
gen_image_tab, | |
edit_image_tab, | |
generate_song_tab, | |
generate_text_tab, | |
generate_flux_image_tab, | |
generate_code_tab, | |
model_meta_llama_test_tab, | |
generate_image_sdxl_tab, | |
generate_musicgen_melody_tab, | |
generate_musicgen_large_tab, | |
transcribe_audio_tab, | |
generate_mistral_instruct_tab, | |
generate_mistral_nemo_tab, | |
generate_gpt2_xl_tab, | |
llama_3_groq_70b_tool_use_tab, | |
phi_3_5_mini_instruct_tab, | |
meta_llama_3_1_8b_tab, | |
meta_llama_3_1_70b_tab, | |
medical_text_summarization_tab, | |
bart_large_cnn_summarization_tab, | |
flux_1_dev_tab, | |
gemma_2_9b_tab, | |
gemma_2_9b_it_tab, | |
gemma_2_2b_tab, | |
gemma_2_2b_it_tab, | |
gemma_2_27b_tab, | |
gemma_2_27b_it_tab, | |
text_to_video_ms_1_7b_tab, | |
text_to_video_ms_1_7b_short_tab, | |
], | |
[ | |
"Generate Image", | |
"Edit Image", | |
"Generate Song", | |
"Generate Text", | |
"Generate FLUX Image", | |
"Generate Code", | |
"Test Meta-Llama", | |
"Generate SDXL Image", | |
"Generate MusicGen Melody", | |
"Generate MusicGen Large", | |
"Transcribe Audio", | |
"Generate Mistral Instruct Response", | |
"Generate Mistral Nemo Response", | |
"Generate GPT-2 XL Response", | |
"Llama 3 Groq 70B Tool Use", | |
"Phi 3.5 Mini Instruct", | |
"Meta Llama 3.1 8B", | |
"Meta Llama 3.1 70B", | |
"Medical Text Summarization", | |
"Bart Large CNN Summarization", | |
"FLUX 1 Dev", | |
"Gemma 2 9B", | |
"Gemma 2 9B IT", | |
"Gemma 2 2B", | |
"Gemma 2 2B IT", | |
"Gemma 2 27B", | |
"Gemma 2 27B IT", | |
"Text to Video MS 1.7B", | |
"Text to Video MS 1.7B Short", | |
], | |
) | |
app.launch(share=True) |