|
|
|
|
|
import os |
|
import random |
|
|
|
import gradio as gr |
|
import numpy as np |
|
import PIL.Image |
|
import torch |
|
import torchvision.transforms.functional as TF |
|
|
|
from diffusers import ControlNetModel, StableDiffusionXLControlNetPipeline, AutoencoderKL |
|
from diffusers import DDIMScheduler, EulerAncestralDiscreteScheduler |
|
from controlnet_aux import PidiNetDetector, HEDdetector |
|
from diffusers.utils import load_image |
|
from huggingface_hub import HfApi |
|
from pathlib import Path |
|
from PIL import Image, ImageOps |
|
import torch |
|
import numpy as np |
|
import cv2 |
|
import os |
|
import random |
|
import spaces |
|
from gradio_imageslider import ImageSlider |
|
|
|
js_func = """ |
|
function refresh() { |
|
const url = new URL(window.location); |
|
|
|
if (url.searchParams.get('__theme') !== 'dark') { |
|
url.searchParams.set('__theme', 'dark'); |
|
window.location.href = url.href; |
|
} |
|
} |
|
""" |
|
def nms(x, t, s): |
|
x = cv2.GaussianBlur(x.astype(np.float32), (0, 0), s) |
|
|
|
f1 = np.array([[0, 0, 0], [1, 1, 1], [0, 0, 0]], dtype=np.uint8) |
|
f2 = np.array([[0, 1, 0], [0, 1, 0], [0, 1, 0]], dtype=np.uint8) |
|
f3 = np.array([[1, 0, 0], [0, 1, 0], [0, 0, 1]], dtype=np.uint8) |
|
f4 = np.array([[0, 0, 1], [0, 1, 0], [1, 0, 0]], dtype=np.uint8) |
|
|
|
y = np.zeros_like(x) |
|
|
|
for f in [f1, f2, f3, f4]: |
|
np.putmask(y, cv2.dilate(x, kernel=f) == x, x) |
|
|
|
z = np.zeros_like(y, dtype=np.uint8) |
|
z[y > t] = 255 |
|
return z |
|
|
|
|
|
DESCRIPTION = '''# Flash Scribble SDXL 🖋️🌄 |
|
super fast sketch to image with Flash SDXL, using [@xinsir](https://huggingface.co/xinsir) [scribble sdxl controlnet](https://huggingface.co/xinsir/controlnet-scribble-sdxl-1.0) and [sdxl flash](https://huggingface.co/sd-community/sdxl-flash) |
|
''' |
|
|
|
if not torch.cuda.is_available(): |
|
DESCRIPTION += "\n<p>Running on CPU 🥶 This demo does not work on CPU.</p>" |
|
|
|
style_list = [ |
|
{ |
|
"name": "(No style)", |
|
"prompt": "{prompt}", |
|
"negative_prompt": "longbody, lowres, bad anatomy, bad hands, missing fingers, extra digit, fewer digits, cropped, worst quality, low quality", |
|
}, |
|
{ |
|
"name": "Cinematic", |
|
"prompt": "cinematic still {prompt} . emotional, harmonious, vignette, highly detailed, high budget, bokeh, cinemascope, moody, epic, gorgeous, film grain, grainy", |
|
"negative_prompt": "anime, cartoon, graphic, text, painting, crayon, graphite, abstract, glitch, deformed, mutated, ugly, disfigured", |
|
}, |
|
{ |
|
"name": "3D Model", |
|
"prompt": "professional 3d model {prompt} . octane render, highly detailed, volumetric, dramatic lighting", |
|
"negative_prompt": "ugly, deformed, noisy, low poly, blurry, painting", |
|
}, |
|
{ |
|
"name": "Anime", |
|
"prompt": "anime artwork {prompt} . anime style, key visual, vibrant, studio anime, highly detailed", |
|
"negative_prompt": "photo, deformed, black and white, realism, disfigured, low contrast", |
|
}, |
|
{ |
|
"name": "Digital Art", |
|
"prompt": "concept art {prompt} . digital artwork, illustrative, painterly, matte painting, highly detailed", |
|
"negative_prompt": "photo, photorealistic, realism, ugly", |
|
}, |
|
{ |
|
"name": "Photographic", |
|
"prompt": "cinematic photo {prompt} . 35mm photograph, film, bokeh, professional, 4k, highly detailed", |
|
"negative_prompt": "drawing, painting, crayon, sketch, graphite, impressionist, noisy, blurry, soft, deformed, ugly", |
|
}, |
|
{ |
|
"name": "Pixel art", |
|
"prompt": "pixel-art {prompt} . low-res, blocky, pixel art style, 8-bit graphics", |
|
"negative_prompt": "sloppy, messy, blurry, noisy, highly detailed, ultra textured, photo, realistic", |
|
}, |
|
{ |
|
"name": "Fantasy art", |
|
"prompt": "ethereal fantasy concept art of {prompt} . magnificent, celestial, ethereal, painterly, epic, majestic, magical, fantasy art, cover art, dreamy", |
|
"negative_prompt": "photographic, realistic, realism, 35mm film, dslr, cropped, frame, text, deformed, glitch, noise, noisy, off-center, deformed, cross-eyed, closed eyes, bad anatomy, ugly, disfigured, sloppy, duplicate, mutated, black and white", |
|
}, |
|
{ |
|
"name": "Neonpunk", |
|
"prompt": "neonpunk style {prompt} . cyberpunk, vaporwave, neon, vibes, vibrant, stunningly beautiful, crisp, detailed, sleek, ultramodern, magenta highlights, dark purple shadows, high contrast, cinematic, ultra detailed, intricate, professional", |
|
"negative_prompt": "painting, drawing, illustration, glitch, deformed, mutated, cross-eyed, ugly, disfigured", |
|
}, |
|
{ |
|
"name": "Manga", |
|
"prompt": "manga style {prompt} . vibrant, high-energy, detailed, iconic, Japanese comic style", |
|
"negative_prompt": "ugly, deformed, noisy, blurry, low contrast, realism, photorealistic, Western comic style", |
|
}, |
|
] |
|
|
|
styles = {k["name"]: (k["prompt"], k["negative_prompt"]) for k in style_list} |
|
STYLE_NAMES = list(styles.keys()) |
|
DEFAULT_STYLE_NAME = "(No style)" |
|
|
|
|
|
def apply_style(style_name: str, positive: str, negative: str = "") -> tuple[str, str]: |
|
p, n = styles.get(style_name, styles[DEFAULT_STYLE_NAME]) |
|
return p.replace("{prompt}", positive), n + negative |
|
|
|
|
|
device = torch.device("cuda" if torch.cuda.is_available() else "cpu") |
|
|
|
controlnet = ControlNetModel.from_pretrained( |
|
"xinsir/controlnet-scribble-sdxl-1.0", |
|
torch_dtype=torch.float16 |
|
) |
|
|
|
|
|
vae = AutoencoderKL.from_pretrained("madebyollin/sdxl-vae-fp16-fix", torch_dtype=torch.float16) |
|
|
|
pipe = StableDiffusionXLControlNetPipeline.from_pretrained( |
|
"sd-community/sdxl-flash", |
|
controlnet=controlnet, |
|
vae=vae, |
|
torch_dtype=torch.float16, |
|
|
|
) |
|
pipe.scheduler = EulerAncestralDiscreteScheduler.from_config(pipe.scheduler.config) |
|
pipe.to(device) |
|
|
|
|
|
MAX_SEED = np.iinfo(np.int32).max |
|
processor = HEDdetector.from_pretrained('lllyasviel/Annotators') |
|
def nms(x, t, s): |
|
x = cv2.GaussianBlur(x.astype(np.float32), (0, 0), s) |
|
|
|
f1 = np.array([[0, 0, 0], [1, 1, 1], [0, 0, 0]], dtype=np.uint8) |
|
f2 = np.array([[0, 1, 0], [0, 1, 0], [0, 1, 0]], dtype=np.uint8) |
|
f3 = np.array([[1, 0, 0], [0, 1, 0], [0, 0, 1]], dtype=np.uint8) |
|
f4 = np.array([[0, 0, 1], [0, 1, 0], [1, 0, 0]], dtype=np.uint8) |
|
|
|
y = np.zeros_like(x) |
|
|
|
for f in [f1, f2, f3, f4]: |
|
np.putmask(y, cv2.dilate(x, kernel=f) == x, x) |
|
|
|
z = np.zeros_like(y, dtype=np.uint8) |
|
z[y > t] = 255 |
|
return z |
|
|
|
def randomize_seed_fn(seed: int, randomize_seed: bool) -> int: |
|
if randomize_seed: |
|
seed = random.randint(0, MAX_SEED) |
|
return seed |
|
|
|
@spaces.GPU |
|
def run( |
|
image: PIL.Image.Image, |
|
prompt: str, |
|
negative_prompt: str, |
|
style_name: str = DEFAULT_STYLE_NAME, |
|
num_steps: int = 25, |
|
guidance_scale: float = 5, |
|
controlnet_conditioning_scale: float = 1.0, |
|
seed: int = 0, |
|
use_hed: bool = False, |
|
progress=gr.Progress(track_tqdm=True), |
|
) -> PIL.Image.Image: |
|
width, height = image['composite'].size |
|
ratio = np.sqrt(1024. * 1024. / (width * height)) |
|
new_width, new_height = int(width * ratio), int(height * ratio) |
|
image = image['composite'].resize((new_width, new_height)) |
|
|
|
if not use_hed: |
|
controlnet_img = image |
|
else: |
|
controlnet_img = processor(image, scribble=False) |
|
|
|
controlnet_img = np.array(controlnet_img) |
|
controlnet_img = nms(controlnet_img, 127, 3) |
|
controlnet_img = cv2.GaussianBlur(controlnet_img, (0, 0), 3) |
|
|
|
|
|
random_val = int(round(random.uniform(0.01, 0.10), 2) * 255) |
|
controlnet_img[controlnet_img > random_val] = 255 |
|
controlnet_img[controlnet_img < 255] = 0 |
|
image = Image.fromarray(controlnet_img) |
|
|
|
|
|
prompt, negative_prompt = apply_style(style_name, prompt, negative_prompt) |
|
|
|
generator = torch.Generator(device=device).manual_seed(seed) |
|
out = pipe( |
|
prompt=prompt, |
|
negative_prompt=negative_prompt, |
|
image=image, |
|
num_inference_steps=num_steps, |
|
generator=generator, |
|
controlnet_conditioning_scale=controlnet_conditioning_scale, |
|
guidance_scale=guidance_scale, |
|
width=new_width, |
|
height=new_height, |
|
).images[0] |
|
|
|
return (controlnet_img, out) |
|
|
|
|
|
with gr.Blocks(css="style.css", js=js_func) as demo: |
|
gr.Markdown(DESCRIPTION, elem_id="description") |
|
gr.DuplicateButton( |
|
value="Duplicate Space for private use", |
|
elem_id="duplicate-button", |
|
visible=os.getenv("SHOW_DUPLICATE_BUTTON") == "1", |
|
) |
|
|
|
with gr.Row(): |
|
with gr.Column(): |
|
with gr.Group(): |
|
image = gr.ImageEditor(type="pil", image_mode="L", crop_size=(512, 512)) |
|
prompt = gr.Textbox(label="Prompt") |
|
style = gr.Dropdown(label="Style", choices=STYLE_NAMES, value=DEFAULT_STYLE_NAME) |
|
use_hed = gr.Checkbox(label="use HED detector", value=False, info="check this box if you upload an image and want to turn it to a sketch") |
|
run_button = gr.Button("Run") |
|
with gr.Accordion("Advanced options", open=False): |
|
negative_prompt = gr.Textbox( |
|
label="Negative prompt", |
|
value="longbody, lowres, bad anatomy, bad hands, missing fingers, extra digit, fewer digits, cropped, worst quality, low quality", |
|
) |
|
num_steps = gr.Slider( |
|
label="Number of steps", |
|
minimum=1, |
|
maximum=50, |
|
step=1, |
|
value=25, |
|
) |
|
guidance_scale = gr.Slider( |
|
label="Guidance scale", |
|
minimum=0.1, |
|
maximum=10.0, |
|
step=0.1, |
|
value=5, |
|
) |
|
controlnet_conditioning_scale = gr.Slider( |
|
label="controlnet conditioning scale", |
|
minimum=0.5, |
|
maximum=5.0, |
|
step=0.1, |
|
value=0.9, |
|
) |
|
seed = gr.Slider( |
|
label="Seed", |
|
minimum=0, |
|
maximum=MAX_SEED, |
|
step=1, |
|
value=0, |
|
) |
|
randomize_seed = gr.Checkbox(label="Randomize seed", value=True) |
|
|
|
with gr.Column(): |
|
with gr.Group(): |
|
image_slider = ImageSlider(position=0.5) |
|
|
|
|
|
inputs = [ |
|
image, |
|
prompt, |
|
negative_prompt, |
|
style, |
|
num_steps, |
|
guidance_scale, |
|
controlnet_conditioning_scale, |
|
seed, |
|
use_hed, |
|
] |
|
outputs = [image_slider] |
|
run_button.click( |
|
fn=randomize_seed_fn, |
|
inputs=[seed, randomize_seed], |
|
outputs=seed, |
|
queue=False, |
|
api_name=False, |
|
).then(lambda x: None, inputs=None, outputs=image_slider).then( |
|
fn=run, inputs=inputs, outputs=outputs |
|
) |
|
|
|
|
|
|
|
demo.queue().launch() |
|
|