Spaces:
Runtime error
Runtime error
import os | |
from vllm import LLM, SamplingParams | |
import gradio as gr | |
from PIL import Image | |
from io import BytesIO | |
import base64 | |
import requests | |
from huggingface_hub import login | |
import os | |
login(os.environ["HF_TOKEN"]) | |
repo_id = "mistral-community/pixtral-12b-240910" #Replace to the model you would like to use | |
sampling_params = SamplingParams(max_tokens=8192, temperature=0.7) | |
max_tokens_per_img = 4096 | |
max_img_per_msg = 5 | |
llm = LLM(model="mistralai/Pixtral-12B-2409", | |
tokenizer_mode="mistral", | |
max_model_len=65536, | |
max_num_batched_tokens=max_img_per_msg * max_tokens_per_img, | |
limit_mm_per_prompt={"image": max_img_per_msg}) # Name or path of your model | |
def encode_image(image: Image.Image, image_format="PNG") -> str: | |
im_file = BytesIO() | |
image.save(im_file, format=image_format) | |
im_bytes = im_file.getvalue() | |
im_64 = base64.b64encode(im_bytes).decode("utf-8") | |
return im_64 | |
# @spaces.GPU #[uncomment to use ZeroGPU] | |
def infer(image_url, prompt, progress=gr.Progress(track_tqdm=True)): | |
image = Image.open(BytesIO(requests.get(image_url).content)) | |
image = image.resize((3844, 2408)) | |
new_image_url = f"data:image/png;base64,{encode_image(image, image_format='PNG')}" | |
messages = [ | |
{ | |
"role": "user", | |
"content": [{"type": "text", "text": prompt}, {"type": "image_url", "image_url": {"url": new_image_url}}] | |
}, | |
] | |
outputs = llm.chat(messages, sampling_params=sampling_params) | |
return outputs[0].outputs[0].text | |
examples = [["https://picsum.photos/id/237/200/300", "What do you see in this image?"]] | |
css = """ | |
#col-container { | |
margin: 0 auto; | |
max-width: 640px; | |
} | |
""" | |
with gr.Blocks(css=css) as demo: | |
with gr.Column(elem_id="col-container"): | |
gr.Markdown(f""" | |
# Mistral Pixtral 12B | |
""") | |
with gr.Row(): | |
prompt = gr.Text( | |
label="Prompt", | |
show_label=False, | |
max_lines=2, | |
placeholder="Enter your prompt", | |
container=False, | |
) | |
with gr.Row(): | |
image_url = gr.Text( | |
label="Image URL", | |
show_label=False, | |
max_lines=1, | |
placeholder="Enter your image URL", | |
container=False, | |
) | |
with gr.Row(): | |
run_button = gr.Button("Run", scale=0) | |
result = gr.Textbox( | |
show_label=False | |
) | |
gr.Examples( | |
examples=examples, | |
inputs=[image_url, prompt] | |
) | |
gr.on( | |
triggers=[run_button.click, image_url.submit, prompt.submit], | |
fn=infer, | |
inputs=[image_url, prompt], | |
outputs=[result] | |
) | |
demo.queue().launch() |