File size: 10,238 Bytes
38ae436 e5563d8 38ae436 b57d37a f1b7b77 b57d37a 779412e 38ae436 b57d37a 38ae436 3327c84 38ae436 b57d37a eb2c3bb 1f69552 c120050 3327c84 c120050 1f69552 e9dec03 c120050 332c793 c120050 3cf00a5 1f69552 c120050 3327c84 b57d37a 38ae436 779412e 4511161 779412e 38ae436 779412e 38ae436 779412e eb2c3bb 779412e eb2c3bb 779412e 38ae436 779412e 38ae436 779412e 38ae436 779412e 38ae436 779412e 38ae436 779412e 38ae436 779412e 38ae436 e5563d8 38ae436 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 |
import spaces
import os
import random
import argparse
import torch
import gradio as gr
import numpy as np
import ChatTTS
import se_extractor
from api import BaseSpeakerTTS, ToneColorConverter
import soundfile
from tts_voice import tts_order_voice
import edge_tts
import tempfile
import anyio
print("loading ChatTTS model...")
chat = ChatTTS.Chat()
chat.load_models()
def generate_seed():
new_seed = random.randint(1, 100000000)
return {
"__type__": "update",
"value": new_seed
}
@spaces.GPU
def chat_tts(text, temperature, top_P, top_K, audio_seed_input, text_seed_input, refine_text_flag, refine_text_input, output_path=None):
torch.manual_seed(audio_seed_input)
rand_spk = torch.randn(768)
params_infer_code = {
'spk_emb': rand_spk,
'temperature': temperature,
'top_P': top_P,
'top_K': top_K,
}
params_refine_text = {'prompt': '[oral_2][laugh_0][break_6]'}
torch.manual_seed(text_seed_input)
if refine_text_flag:
if refine_text_input:
params_refine_text['prompt'] = refine_text_input
text = chat.infer(text,
skip_refine_text=False,
refine_text_only=True,
params_refine_text=params_refine_text,
params_infer_code=params_infer_code
)
print("Text has been refined!")
wav = chat.infer(text,
skip_refine_text=True,
params_refine_text=params_refine_text,
params_infer_code=params_infer_code
)
audio_data = np.array(wav[0]).flatten()
sample_rate = 24000
text_data = text[0] if isinstance(text, list) else text
if output_path is None:
return [(sample_rate, audio_data), text_data]
else:
soundfile.write(output_path, audio_data, sample_rate)
# OpenVoice
ckpt_base_en = 'checkpoints/base_speakers/EN'
ckpt_converter_en = 'checkpoints/converter'
device = 'cuda:0'
#device = "cpu"
base_speaker_tts = BaseSpeakerTTS(f'{ckpt_base_en}/config.json', device=device)
base_speaker_tts.load_ckpt(f'{ckpt_base_en}/checkpoint.pth')
tone_color_converter = ToneColorConverter(f'{ckpt_converter_en}/config.json', device=device)
tone_color_converter.load_ckpt(f'{ckpt_converter_en}/checkpoint.pth')
def generate_audio(text, audio_ref, temperature, top_P, top_K, audio_seed_input, text_seed_input, refine_text_flag, refine_text_input):
source_se = torch.load(f'{ckpt_base_en}/en_default_se.pth').to(device)
reference_speaker = audio_ref
target_se, audio_name = se_extractor.get_se(reference_speaker, tone_color_converter, target_dir='processed', vad=True)
save_path = "output.wav"
# Run the base speaker tts
src_path = "tmp.wav"
chat_tts(text, temperature, top_P, top_K, audio_seed_input, text_seed_input, refine_text_flag, refine_text_input, src_path)
print("Ready for voice cloning!")
source_se, audio_name = se_extractor.get_se(src_path, tone_color_converter, target_dir='processed', vad=True)
print("Get source segment!")
# Run the tone color converter
encode_message = "@Hilley"
# convert from file
tone_color_converter.convert(
audio_src_path=src_path,
src_se=source_se,
tgt_se=target_se,
output_path=save_path,
message=encode_message)
'''
# convert from data
src_path = None
sample_rate, audio = chat_tts(text, temperature, top_P, top_K, audio_seed_input, text_seed_input, refine_text_flag, refine_text_input, src_path)[0]
print("Ready for voice cloning!")
tone_color_converter.convert_data(
audio=audio,
sample_rate=sample_rate,
src_se=source_se,
tgt_se=target_se,
output_path=save_path,
message=encode_message)
'''
print("Finished!")
return "output.wav"
def vc_en(text, audio_ref, style_mode):
if style_mode=="default":
source_se = torch.load(f'{ckpt_base_en}/en_default_se.pth').to(device)
reference_speaker = audio_ref
target_se, audio_name = se_extractor.get_se(reference_speaker, tone_color_converter, target_dir='processed', vad=True)
save_path = "output.wav"
# Run the base speaker tts
src_path = "tmp.wav"
base_speaker_tts.tts(text, src_path, speaker='default', language='English', speed=1.0)
# Run the tone color converter
encode_message = "@MyShell"
tone_color_converter.convert(
audio_src_path=src_path,
src_se=source_se,
tgt_se=target_se,
output_path=save_path,
message=encode_message)
else:
source_se = torch.load(f'{ckpt_base_en}/en_style_se.pth').to(device)
reference_speaker = audio_ref
target_se, audio_name = se_extractor.get_se(reference_speaker, tone_color_converter, target_dir='processed', vad=True)
save_path = "output.wav"
# Run the base speaker tts
src_path = "tmp.wav"
base_speaker_tts.tts(text, src_path, speaker=style_mode, language='English', speed=0.9)
# Run the tone color converter
encode_message = "@MyShell"
tone_color_converter.convert(
audio_src_path=src_path,
src_se=source_se,
tgt_se=target_se,
output_path=save_path,
message=encode_message)
return "output.wav"
language_dict = tts_order_voice
base_speaker = "base_audio.mp3"
source_se, audio_name = se_extractor.get_se(base_speaker, tone_color_converter, vad=True)
async def text_to_speech_edge(text, audio_ref, language_code):
voice = language_dict[language_code]
communicate = edge_tts.Communicate(text, voice)
with tempfile.NamedTemporaryFile(delete=False, suffix=".mp3") as tmp_file:
tmp_path = tmp_file.name
await communicate.save(tmp_path)
reference_speaker = audio_ref
target_se, audio_name = se_extractor.get_se(reference_speaker, tone_color_converter, target_dir='processed', vad=True)
save_path = "output.wav"
# Run the tone color converter
encode_message = "@MyShell"
tone_color_converter.convert(
audio_src_path=tmp_path,
src_se=source_se,
tgt_se=target_se,
output_path=save_path,
message=encode_message)
return "output.wav"
with gr.Blocks() as demo:
gr.Markdown("# Enjoy chatting with your ai friends on website, telegram and so on! (https://linkin.love)")
default_text = "Today a man knocked on my door and asked for a small donation toward the local swimming pool. I gave him a glass of water."
text_input = gr.Textbox(label="Input Text", lines=4, placeholder="Please Input Text...", value=default_text)
voice_ref = gr.Audio(label="Reference Audio", info="Click on the ✎ button to upload your own target speaker audio", type="filepath", value="base_audio.mp3")
with gr.Tab("💕Super Natural"):
default_refine_text = "[oral_2][laugh_0][break_6]"
refine_text_checkbox = gr.Checkbox(label="Refine text", info="'oral' means add filler words, 'laugh' means add laughter, and 'break' means add a pause. (0-10) ", value=True)
refine_text_input = gr.Textbox(label="Refine Prompt", lines=1, placeholder="Please Refine Prompt...", value=default_refine_text)
with gr.Row():
temperature_slider = gr.Slider(minimum=0.00001, maximum=1.0, step=0.00001, value=0.3, label="Audio temperature")
top_p_slider = gr.Slider(minimum=0.1, maximum=0.9, step=0.05, value=0.7, label="top_P")
top_k_slider = gr.Slider(minimum=1, maximum=20, step=1, value=20, label="top_K")
with gr.Row():
audio_seed_input = gr.Number(value=42, label="Speaker Seed")
generate_audio_seed = gr.Button("\U0001F3B2")
text_seed_input = gr.Number(value=42, label="Text Seed")
generate_text_seed = gr.Button("\U0001F3B2")
generate_button = gr.Button("Generate!")
#text_output = gr.Textbox(label="Refined Text", interactive=False)
audio_output = gr.Audio(label="Output Audio")
generate_audio_seed.click(generate_seed,
inputs=[],
outputs=audio_seed_input)
generate_text_seed.click(generate_seed,
inputs=[],
outputs=text_seed_input)
generate_button.click(generate_audio,
inputs=[text_input, voice_ref, temperature_slider, top_p_slider, top_k_slider, audio_seed_input, text_seed_input, refine_text_checkbox, refine_text_input],
outputs=audio_output)
with gr.Tab("💕Emotion Control"):
emo_pick = gr.Dropdown(label="Emotion", info="🙂default😊friendly🤫whispering😄cheerful😱terrified😡angry😢sad", choices=["default", "friendly", "whispering", "cheerful", "terrified", "angry", "sad"], value="default")
generate_button_emo = gr.Button("Generate!", variant="primary")
audio_emo = gr.Audio(label="Output Audio", type="filepath")
generate_button_emo.click(vc_en, [text_input, voice_ref, emo_pick], audio_emo)
with gr.Tab("💕multilingual"):
language = gr.Dropdown(choices=list(language_dict.keys()), value=list(language_dict.keys())[15], label="请选择文本对应的语言及说话人")
generate_button_ml = gr.Button("开始语音情感真实复刻吧!", variant="primary")
audio_ml = gr.Audio(label="为您合成的专属语音", type="filepath")
generate_button_ml.click(text_to_speech_edge, [text_input, voice_ref, language], audio_ml)
parser = argparse.ArgumentParser(description='ChatTTS demo Launch')
parser.add_argument('--server_name', type=str, default='0.0.0.0', help='Server name')
parser.add_argument('--server_port', type=int, default=8080, help='Server port')
args = parser.parse_args()
# demo.launch(server_name=args.server_name, server_port=args.server_port, inbrowser=True)
if __name__ == '__main__':
demo.launch() |