Upload 11 files
Browse files- api.py +202 -0
- attentions.py +465 -0
- base_audio.mp3 +0 -0
- commons.py +160 -0
- mel_processing.py +183 -0
- models.py +497 -0
- modules.py +598 -0
- se_extractor.py +139 -0
- transforms.py +209 -0
- tts_voice.py +29 -0
- utils.py +194 -0
api.py
ADDED
@@ -0,0 +1,202 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import torch
|
2 |
+
import numpy as np
|
3 |
+
import re
|
4 |
+
import soundfile
|
5 |
+
import utils
|
6 |
+
import commons
|
7 |
+
import os
|
8 |
+
import librosa
|
9 |
+
from text import text_to_sequence
|
10 |
+
from mel_processing import spectrogram_torch
|
11 |
+
from models import SynthesizerTrn
|
12 |
+
|
13 |
+
|
14 |
+
class OpenVoiceBaseClass(object):
|
15 |
+
def __init__(self,
|
16 |
+
config_path,
|
17 |
+
#device='cuda:0'):
|
18 |
+
device="cpu"):
|
19 |
+
#if 'cuda' in device:
|
20 |
+
# assert torch.cuda.is_available()
|
21 |
+
|
22 |
+
hps = utils.get_hparams_from_file(config_path)
|
23 |
+
|
24 |
+
model = SynthesizerTrn(
|
25 |
+
len(getattr(hps, 'symbols', [])),
|
26 |
+
hps.data.filter_length // 2 + 1,
|
27 |
+
n_speakers=hps.data.n_speakers,
|
28 |
+
**hps.model,
|
29 |
+
).to(device)
|
30 |
+
|
31 |
+
model.eval()
|
32 |
+
self.model = model
|
33 |
+
self.hps = hps
|
34 |
+
self.device = device
|
35 |
+
|
36 |
+
def load_ckpt(self, ckpt_path):
|
37 |
+
checkpoint_dict = torch.load(ckpt_path, map_location=torch.device('cpu'))
|
38 |
+
a, b = self.model.load_state_dict(checkpoint_dict['model'], strict=False)
|
39 |
+
print("Loaded checkpoint '{}'".format(ckpt_path))
|
40 |
+
print('missing/unexpected keys:', a, b)
|
41 |
+
|
42 |
+
|
43 |
+
class BaseSpeakerTTS(OpenVoiceBaseClass):
|
44 |
+
language_marks = {
|
45 |
+
"english": "EN",
|
46 |
+
"chinese": "ZH",
|
47 |
+
}
|
48 |
+
|
49 |
+
@staticmethod
|
50 |
+
def get_text(text, hps, is_symbol):
|
51 |
+
text_norm = text_to_sequence(text, hps.symbols, [] if is_symbol else hps.data.text_cleaners)
|
52 |
+
if hps.data.add_blank:
|
53 |
+
text_norm = commons.intersperse(text_norm, 0)
|
54 |
+
text_norm = torch.LongTensor(text_norm)
|
55 |
+
return text_norm
|
56 |
+
|
57 |
+
@staticmethod
|
58 |
+
def audio_numpy_concat(segment_data_list, sr, speed=1.):
|
59 |
+
audio_segments = []
|
60 |
+
for segment_data in segment_data_list:
|
61 |
+
audio_segments += segment_data.reshape(-1).tolist()
|
62 |
+
audio_segments += [0] * int((sr * 0.05)/speed)
|
63 |
+
audio_segments = np.array(audio_segments).astype(np.float32)
|
64 |
+
return audio_segments
|
65 |
+
|
66 |
+
@staticmethod
|
67 |
+
def split_sentences_into_pieces(text, language_str):
|
68 |
+
texts = utils.split_sentence(text, language_str=language_str)
|
69 |
+
print(" > Text splitted to sentences.")
|
70 |
+
print('\n'.join(texts))
|
71 |
+
print(" > ===========================")
|
72 |
+
return texts
|
73 |
+
|
74 |
+
def tts(self, text, output_path, speaker, language='English', speed=1.0):
|
75 |
+
mark = self.language_marks.get(language.lower(), None)
|
76 |
+
assert mark is not None, f"language {language} is not supported"
|
77 |
+
|
78 |
+
texts = self.split_sentences_into_pieces(text, mark)
|
79 |
+
|
80 |
+
audio_list = []
|
81 |
+
for t in texts:
|
82 |
+
t = re.sub(r'([a-z])([A-Z])', r'\1 \2', t)
|
83 |
+
t = f'[{mark}]{t}[{mark}]'
|
84 |
+
stn_tst = self.get_text(t, self.hps, False)
|
85 |
+
device = self.device
|
86 |
+
speaker_id = self.hps.speakers[speaker]
|
87 |
+
with torch.no_grad():
|
88 |
+
x_tst = stn_tst.unsqueeze(0).to(device)
|
89 |
+
x_tst_lengths = torch.LongTensor([stn_tst.size(0)]).to(device)
|
90 |
+
sid = torch.LongTensor([speaker_id]).to(device)
|
91 |
+
audio = self.model.infer(x_tst, x_tst_lengths, sid=sid, noise_scale=0.667, noise_scale_w=0.6,
|
92 |
+
length_scale=1.0 / speed)[0][0, 0].data.cpu().float().numpy()
|
93 |
+
audio_list.append(audio)
|
94 |
+
audio = self.audio_numpy_concat(audio_list, sr=self.hps.data.sampling_rate, speed=speed)
|
95 |
+
|
96 |
+
if output_path is None:
|
97 |
+
return audio
|
98 |
+
else:
|
99 |
+
soundfile.write(output_path, audio, self.hps.data.sampling_rate)
|
100 |
+
|
101 |
+
|
102 |
+
class ToneColorConverter(OpenVoiceBaseClass):
|
103 |
+
def __init__(self, *args, **kwargs):
|
104 |
+
super().__init__(*args, **kwargs)
|
105 |
+
|
106 |
+
if kwargs.get('enable_watermark', True):
|
107 |
+
import wavmark
|
108 |
+
self.watermark_model = wavmark.load_model().to(self.device)
|
109 |
+
else:
|
110 |
+
self.watermark_model = None
|
111 |
+
|
112 |
+
|
113 |
+
|
114 |
+
def extract_se(self, ref_wav_list, se_save_path=None):
|
115 |
+
if isinstance(ref_wav_list, str):
|
116 |
+
ref_wav_list = [ref_wav_list]
|
117 |
+
|
118 |
+
device = self.device
|
119 |
+
hps = self.hps
|
120 |
+
gs = []
|
121 |
+
|
122 |
+
for fname in ref_wav_list:
|
123 |
+
audio_ref, sr = librosa.load(fname, sr=hps.data.sampling_rate)
|
124 |
+
y = torch.FloatTensor(audio_ref)
|
125 |
+
y = y.to(device)
|
126 |
+
y = y.unsqueeze(0)
|
127 |
+
y = spectrogram_torch(y, hps.data.filter_length,
|
128 |
+
hps.data.sampling_rate, hps.data.hop_length, hps.data.win_length,
|
129 |
+
center=False).to(device)
|
130 |
+
with torch.no_grad():
|
131 |
+
g = self.model.ref_enc(y.transpose(1, 2)).unsqueeze(-1)
|
132 |
+
gs.append(g.detach())
|
133 |
+
gs = torch.stack(gs).mean(0)
|
134 |
+
|
135 |
+
if se_save_path is not None:
|
136 |
+
os.makedirs(os.path.dirname(se_save_path), exist_ok=True)
|
137 |
+
torch.save(gs.cpu(), se_save_path)
|
138 |
+
|
139 |
+
return gs
|
140 |
+
|
141 |
+
def convert(self, audio_src_path, src_se, tgt_se, output_path=None, tau=0.3, message="default"):
|
142 |
+
hps = self.hps
|
143 |
+
# load audio
|
144 |
+
audio, sample_rate = librosa.load(audio_src_path, sr=hps.data.sampling_rate)
|
145 |
+
audio = torch.tensor(audio).float()
|
146 |
+
|
147 |
+
with torch.no_grad():
|
148 |
+
y = torch.FloatTensor(audio).to(self.device)
|
149 |
+
y = y.unsqueeze(0)
|
150 |
+
spec = spectrogram_torch(y, hps.data.filter_length,
|
151 |
+
hps.data.sampling_rate, hps.data.hop_length, hps.data.win_length,
|
152 |
+
center=False).to(self.device)
|
153 |
+
spec_lengths = torch.LongTensor([spec.size(-1)]).to(self.device)
|
154 |
+
audio = self.model.voice_conversion(spec, spec_lengths, sid_src=src_se, sid_tgt=tgt_se, tau=tau)[0][
|
155 |
+
0, 0].data.cpu().float().numpy()
|
156 |
+
audio = self.add_watermark(audio, message)
|
157 |
+
if output_path is None:
|
158 |
+
return audio
|
159 |
+
else:
|
160 |
+
soundfile.write(output_path, audio, hps.data.sampling_rate)
|
161 |
+
|
162 |
+
def add_watermark(self, audio, message):
|
163 |
+
if self.watermark_model is None:
|
164 |
+
return audio
|
165 |
+
device = self.device
|
166 |
+
bits = utils.string_to_bits(message).reshape(-1)
|
167 |
+
n_repeat = len(bits) // 32
|
168 |
+
|
169 |
+
K = 16000
|
170 |
+
coeff = 2
|
171 |
+
for n in range(n_repeat):
|
172 |
+
trunck = audio[(coeff * n) * K: (coeff * n + 1) * K]
|
173 |
+
if len(trunck) != K:
|
174 |
+
print('Audio too short, fail to add watermark')
|
175 |
+
break
|
176 |
+
message_npy = bits[n * 32: (n + 1) * 32]
|
177 |
+
|
178 |
+
with torch.no_grad():
|
179 |
+
signal = torch.FloatTensor(trunck).to(device)[None]
|
180 |
+
message_tensor = torch.FloatTensor(message_npy).to(device)[None]
|
181 |
+
signal_wmd_tensor = self.watermark_model.encode(signal, message_tensor)
|
182 |
+
signal_wmd_npy = signal_wmd_tensor.detach().cpu().squeeze()
|
183 |
+
audio[(coeff * n) * K: (coeff * n + 1) * K] = signal_wmd_npy
|
184 |
+
return audio
|
185 |
+
|
186 |
+
def detect_watermark(self, audio, n_repeat):
|
187 |
+
bits = []
|
188 |
+
K = 16000
|
189 |
+
coeff = 2
|
190 |
+
for n in range(n_repeat):
|
191 |
+
trunck = audio[(coeff * n) * K: (coeff * n + 1) * K]
|
192 |
+
if len(trunck) != K:
|
193 |
+
print('Audio too short, fail to detect watermark')
|
194 |
+
return 'Fail'
|
195 |
+
with torch.no_grad():
|
196 |
+
signal = torch.FloatTensor(trunck).to(self.device).unsqueeze(0)
|
197 |
+
message_decoded_npy = (self.watermark_model.decode(signal) >= 0.5).int().detach().cpu().numpy().squeeze()
|
198 |
+
bits.append(message_decoded_npy)
|
199 |
+
bits = np.stack(bits).reshape(-1, 8)
|
200 |
+
message = utils.bits_to_string(bits)
|
201 |
+
return message
|
202 |
+
|
attentions.py
ADDED
@@ -0,0 +1,465 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import math
|
2 |
+
import torch
|
3 |
+
from torch import nn
|
4 |
+
from torch.nn import functional as F
|
5 |
+
|
6 |
+
import commons
|
7 |
+
import logging
|
8 |
+
|
9 |
+
logger = logging.getLogger(__name__)
|
10 |
+
|
11 |
+
|
12 |
+
class LayerNorm(nn.Module):
|
13 |
+
def __init__(self, channels, eps=1e-5):
|
14 |
+
super().__init__()
|
15 |
+
self.channels = channels
|
16 |
+
self.eps = eps
|
17 |
+
|
18 |
+
self.gamma = nn.Parameter(torch.ones(channels))
|
19 |
+
self.beta = nn.Parameter(torch.zeros(channels))
|
20 |
+
|
21 |
+
def forward(self, x):
|
22 |
+
x = x.transpose(1, -1)
|
23 |
+
x = F.layer_norm(x, (self.channels,), self.gamma, self.beta, self.eps)
|
24 |
+
return x.transpose(1, -1)
|
25 |
+
|
26 |
+
|
27 |
+
@torch.jit.script
|
28 |
+
def fused_add_tanh_sigmoid_multiply(input_a, input_b, n_channels):
|
29 |
+
n_channels_int = n_channels[0]
|
30 |
+
in_act = input_a + input_b
|
31 |
+
t_act = torch.tanh(in_act[:, :n_channels_int, :])
|
32 |
+
s_act = torch.sigmoid(in_act[:, n_channels_int:, :])
|
33 |
+
acts = t_act * s_act
|
34 |
+
return acts
|
35 |
+
|
36 |
+
|
37 |
+
class Encoder(nn.Module):
|
38 |
+
def __init__(
|
39 |
+
self,
|
40 |
+
hidden_channels,
|
41 |
+
filter_channels,
|
42 |
+
n_heads,
|
43 |
+
n_layers,
|
44 |
+
kernel_size=1,
|
45 |
+
p_dropout=0.0,
|
46 |
+
window_size=4,
|
47 |
+
isflow=True,
|
48 |
+
**kwargs
|
49 |
+
):
|
50 |
+
super().__init__()
|
51 |
+
self.hidden_channels = hidden_channels
|
52 |
+
self.filter_channels = filter_channels
|
53 |
+
self.n_heads = n_heads
|
54 |
+
self.n_layers = n_layers
|
55 |
+
self.kernel_size = kernel_size
|
56 |
+
self.p_dropout = p_dropout
|
57 |
+
self.window_size = window_size
|
58 |
+
# if isflow:
|
59 |
+
# cond_layer = torch.nn.Conv1d(256, 2*hidden_channels*n_layers, 1)
|
60 |
+
# self.cond_pre = torch.nn.Conv1d(hidden_channels, 2*hidden_channels, 1)
|
61 |
+
# self.cond_layer = weight_norm(cond_layer, name='weight')
|
62 |
+
# self.gin_channels = 256
|
63 |
+
self.cond_layer_idx = self.n_layers
|
64 |
+
if "gin_channels" in kwargs:
|
65 |
+
self.gin_channels = kwargs["gin_channels"]
|
66 |
+
if self.gin_channels != 0:
|
67 |
+
self.spk_emb_linear = nn.Linear(self.gin_channels, self.hidden_channels)
|
68 |
+
# vits2 says 3rd block, so idx is 2 by default
|
69 |
+
self.cond_layer_idx = (
|
70 |
+
kwargs["cond_layer_idx"] if "cond_layer_idx" in kwargs else 2
|
71 |
+
)
|
72 |
+
# logging.debug(self.gin_channels, self.cond_layer_idx)
|
73 |
+
assert (
|
74 |
+
self.cond_layer_idx < self.n_layers
|
75 |
+
), "cond_layer_idx should be less than n_layers"
|
76 |
+
self.drop = nn.Dropout(p_dropout)
|
77 |
+
self.attn_layers = nn.ModuleList()
|
78 |
+
self.norm_layers_1 = nn.ModuleList()
|
79 |
+
self.ffn_layers = nn.ModuleList()
|
80 |
+
self.norm_layers_2 = nn.ModuleList()
|
81 |
+
|
82 |
+
for i in range(self.n_layers):
|
83 |
+
self.attn_layers.append(
|
84 |
+
MultiHeadAttention(
|
85 |
+
hidden_channels,
|
86 |
+
hidden_channels,
|
87 |
+
n_heads,
|
88 |
+
p_dropout=p_dropout,
|
89 |
+
window_size=window_size,
|
90 |
+
)
|
91 |
+
)
|
92 |
+
self.norm_layers_1.append(LayerNorm(hidden_channels))
|
93 |
+
self.ffn_layers.append(
|
94 |
+
FFN(
|
95 |
+
hidden_channels,
|
96 |
+
hidden_channels,
|
97 |
+
filter_channels,
|
98 |
+
kernel_size,
|
99 |
+
p_dropout=p_dropout,
|
100 |
+
)
|
101 |
+
)
|
102 |
+
self.norm_layers_2.append(LayerNorm(hidden_channels))
|
103 |
+
|
104 |
+
def forward(self, x, x_mask, g=None):
|
105 |
+
attn_mask = x_mask.unsqueeze(2) * x_mask.unsqueeze(-1)
|
106 |
+
x = x * x_mask
|
107 |
+
for i in range(self.n_layers):
|
108 |
+
if i == self.cond_layer_idx and g is not None:
|
109 |
+
g = self.spk_emb_linear(g.transpose(1, 2))
|
110 |
+
g = g.transpose(1, 2)
|
111 |
+
x = x + g
|
112 |
+
x = x * x_mask
|
113 |
+
y = self.attn_layers[i](x, x, attn_mask)
|
114 |
+
y = self.drop(y)
|
115 |
+
x = self.norm_layers_1[i](x + y)
|
116 |
+
|
117 |
+
y = self.ffn_layers[i](x, x_mask)
|
118 |
+
y = self.drop(y)
|
119 |
+
x = self.norm_layers_2[i](x + y)
|
120 |
+
x = x * x_mask
|
121 |
+
return x
|
122 |
+
|
123 |
+
|
124 |
+
class Decoder(nn.Module):
|
125 |
+
def __init__(
|
126 |
+
self,
|
127 |
+
hidden_channels,
|
128 |
+
filter_channels,
|
129 |
+
n_heads,
|
130 |
+
n_layers,
|
131 |
+
kernel_size=1,
|
132 |
+
p_dropout=0.0,
|
133 |
+
proximal_bias=False,
|
134 |
+
proximal_init=True,
|
135 |
+
**kwargs
|
136 |
+
):
|
137 |
+
super().__init__()
|
138 |
+
self.hidden_channels = hidden_channels
|
139 |
+
self.filter_channels = filter_channels
|
140 |
+
self.n_heads = n_heads
|
141 |
+
self.n_layers = n_layers
|
142 |
+
self.kernel_size = kernel_size
|
143 |
+
self.p_dropout = p_dropout
|
144 |
+
self.proximal_bias = proximal_bias
|
145 |
+
self.proximal_init = proximal_init
|
146 |
+
|
147 |
+
self.drop = nn.Dropout(p_dropout)
|
148 |
+
self.self_attn_layers = nn.ModuleList()
|
149 |
+
self.norm_layers_0 = nn.ModuleList()
|
150 |
+
self.encdec_attn_layers = nn.ModuleList()
|
151 |
+
self.norm_layers_1 = nn.ModuleList()
|
152 |
+
self.ffn_layers = nn.ModuleList()
|
153 |
+
self.norm_layers_2 = nn.ModuleList()
|
154 |
+
for i in range(self.n_layers):
|
155 |
+
self.self_attn_layers.append(
|
156 |
+
MultiHeadAttention(
|
157 |
+
hidden_channels,
|
158 |
+
hidden_channels,
|
159 |
+
n_heads,
|
160 |
+
p_dropout=p_dropout,
|
161 |
+
proximal_bias=proximal_bias,
|
162 |
+
proximal_init=proximal_init,
|
163 |
+
)
|
164 |
+
)
|
165 |
+
self.norm_layers_0.append(LayerNorm(hidden_channels))
|
166 |
+
self.encdec_attn_layers.append(
|
167 |
+
MultiHeadAttention(
|
168 |
+
hidden_channels, hidden_channels, n_heads, p_dropout=p_dropout
|
169 |
+
)
|
170 |
+
)
|
171 |
+
self.norm_layers_1.append(LayerNorm(hidden_channels))
|
172 |
+
self.ffn_layers.append(
|
173 |
+
FFN(
|
174 |
+
hidden_channels,
|
175 |
+
hidden_channels,
|
176 |
+
filter_channels,
|
177 |
+
kernel_size,
|
178 |
+
p_dropout=p_dropout,
|
179 |
+
causal=True,
|
180 |
+
)
|
181 |
+
)
|
182 |
+
self.norm_layers_2.append(LayerNorm(hidden_channels))
|
183 |
+
|
184 |
+
def forward(self, x, x_mask, h, h_mask):
|
185 |
+
"""
|
186 |
+
x: decoder input
|
187 |
+
h: encoder output
|
188 |
+
"""
|
189 |
+
self_attn_mask = commons.subsequent_mask(x_mask.size(2)).to(
|
190 |
+
device=x.device, dtype=x.dtype
|
191 |
+
)
|
192 |
+
encdec_attn_mask = h_mask.unsqueeze(2) * x_mask.unsqueeze(-1)
|
193 |
+
x = x * x_mask
|
194 |
+
for i in range(self.n_layers):
|
195 |
+
y = self.self_attn_layers[i](x, x, self_attn_mask)
|
196 |
+
y = self.drop(y)
|
197 |
+
x = self.norm_layers_0[i](x + y)
|
198 |
+
|
199 |
+
y = self.encdec_attn_layers[i](x, h, encdec_attn_mask)
|
200 |
+
y = self.drop(y)
|
201 |
+
x = self.norm_layers_1[i](x + y)
|
202 |
+
|
203 |
+
y = self.ffn_layers[i](x, x_mask)
|
204 |
+
y = self.drop(y)
|
205 |
+
x = self.norm_layers_2[i](x + y)
|
206 |
+
x = x * x_mask
|
207 |
+
return x
|
208 |
+
|
209 |
+
|
210 |
+
class MultiHeadAttention(nn.Module):
|
211 |
+
def __init__(
|
212 |
+
self,
|
213 |
+
channels,
|
214 |
+
out_channels,
|
215 |
+
n_heads,
|
216 |
+
p_dropout=0.0,
|
217 |
+
window_size=None,
|
218 |
+
heads_share=True,
|
219 |
+
block_length=None,
|
220 |
+
proximal_bias=False,
|
221 |
+
proximal_init=False,
|
222 |
+
):
|
223 |
+
super().__init__()
|
224 |
+
assert channels % n_heads == 0
|
225 |
+
|
226 |
+
self.channels = channels
|
227 |
+
self.out_channels = out_channels
|
228 |
+
self.n_heads = n_heads
|
229 |
+
self.p_dropout = p_dropout
|
230 |
+
self.window_size = window_size
|
231 |
+
self.heads_share = heads_share
|
232 |
+
self.block_length = block_length
|
233 |
+
self.proximal_bias = proximal_bias
|
234 |
+
self.proximal_init = proximal_init
|
235 |
+
self.attn = None
|
236 |
+
|
237 |
+
self.k_channels = channels // n_heads
|
238 |
+
self.conv_q = nn.Conv1d(channels, channels, 1)
|
239 |
+
self.conv_k = nn.Conv1d(channels, channels, 1)
|
240 |
+
self.conv_v = nn.Conv1d(channels, channels, 1)
|
241 |
+
self.conv_o = nn.Conv1d(channels, out_channels, 1)
|
242 |
+
self.drop = nn.Dropout(p_dropout)
|
243 |
+
|
244 |
+
if window_size is not None:
|
245 |
+
n_heads_rel = 1 if heads_share else n_heads
|
246 |
+
rel_stddev = self.k_channels**-0.5
|
247 |
+
self.emb_rel_k = nn.Parameter(
|
248 |
+
torch.randn(n_heads_rel, window_size * 2 + 1, self.k_channels)
|
249 |
+
* rel_stddev
|
250 |
+
)
|
251 |
+
self.emb_rel_v = nn.Parameter(
|
252 |
+
torch.randn(n_heads_rel, window_size * 2 + 1, self.k_channels)
|
253 |
+
* rel_stddev
|
254 |
+
)
|
255 |
+
|
256 |
+
nn.init.xavier_uniform_(self.conv_q.weight)
|
257 |
+
nn.init.xavier_uniform_(self.conv_k.weight)
|
258 |
+
nn.init.xavier_uniform_(self.conv_v.weight)
|
259 |
+
if proximal_init:
|
260 |
+
with torch.no_grad():
|
261 |
+
self.conv_k.weight.copy_(self.conv_q.weight)
|
262 |
+
self.conv_k.bias.copy_(self.conv_q.bias)
|
263 |
+
|
264 |
+
def forward(self, x, c, attn_mask=None):
|
265 |
+
q = self.conv_q(x)
|
266 |
+
k = self.conv_k(c)
|
267 |
+
v = self.conv_v(c)
|
268 |
+
|
269 |
+
x, self.attn = self.attention(q, k, v, mask=attn_mask)
|
270 |
+
|
271 |
+
x = self.conv_o(x)
|
272 |
+
return x
|
273 |
+
|
274 |
+
def attention(self, query, key, value, mask=None):
|
275 |
+
# reshape [b, d, t] -> [b, n_h, t, d_k]
|
276 |
+
b, d, t_s, t_t = (*key.size(), query.size(2))
|
277 |
+
query = query.view(b, self.n_heads, self.k_channels, t_t).transpose(2, 3)
|
278 |
+
key = key.view(b, self.n_heads, self.k_channels, t_s).transpose(2, 3)
|
279 |
+
value = value.view(b, self.n_heads, self.k_channels, t_s).transpose(2, 3)
|
280 |
+
|
281 |
+
scores = torch.matmul(query / math.sqrt(self.k_channels), key.transpose(-2, -1))
|
282 |
+
if self.window_size is not None:
|
283 |
+
assert (
|
284 |
+
t_s == t_t
|
285 |
+
), "Relative attention is only available for self-attention."
|
286 |
+
key_relative_embeddings = self._get_relative_embeddings(self.emb_rel_k, t_s)
|
287 |
+
rel_logits = self._matmul_with_relative_keys(
|
288 |
+
query / math.sqrt(self.k_channels), key_relative_embeddings
|
289 |
+
)
|
290 |
+
scores_local = self._relative_position_to_absolute_position(rel_logits)
|
291 |
+
scores = scores + scores_local
|
292 |
+
if self.proximal_bias:
|
293 |
+
assert t_s == t_t, "Proximal bias is only available for self-attention."
|
294 |
+
scores = scores + self._attention_bias_proximal(t_s).to(
|
295 |
+
device=scores.device, dtype=scores.dtype
|
296 |
+
)
|
297 |
+
if mask is not None:
|
298 |
+
scores = scores.masked_fill(mask == 0, -1e4)
|
299 |
+
if self.block_length is not None:
|
300 |
+
assert (
|
301 |
+
t_s == t_t
|
302 |
+
), "Local attention is only available for self-attention."
|
303 |
+
block_mask = (
|
304 |
+
torch.ones_like(scores)
|
305 |
+
.triu(-self.block_length)
|
306 |
+
.tril(self.block_length)
|
307 |
+
)
|
308 |
+
scores = scores.masked_fill(block_mask == 0, -1e4)
|
309 |
+
p_attn = F.softmax(scores, dim=-1) # [b, n_h, t_t, t_s]
|
310 |
+
p_attn = self.drop(p_attn)
|
311 |
+
output = torch.matmul(p_attn, value)
|
312 |
+
if self.window_size is not None:
|
313 |
+
relative_weights = self._absolute_position_to_relative_position(p_attn)
|
314 |
+
value_relative_embeddings = self._get_relative_embeddings(
|
315 |
+
self.emb_rel_v, t_s
|
316 |
+
)
|
317 |
+
output = output + self._matmul_with_relative_values(
|
318 |
+
relative_weights, value_relative_embeddings
|
319 |
+
)
|
320 |
+
output = (
|
321 |
+
output.transpose(2, 3).contiguous().view(b, d, t_t)
|
322 |
+
) # [b, n_h, t_t, d_k] -> [b, d, t_t]
|
323 |
+
return output, p_attn
|
324 |
+
|
325 |
+
def _matmul_with_relative_values(self, x, y):
|
326 |
+
"""
|
327 |
+
x: [b, h, l, m]
|
328 |
+
y: [h or 1, m, d]
|
329 |
+
ret: [b, h, l, d]
|
330 |
+
"""
|
331 |
+
ret = torch.matmul(x, y.unsqueeze(0))
|
332 |
+
return ret
|
333 |
+
|
334 |
+
def _matmul_with_relative_keys(self, x, y):
|
335 |
+
"""
|
336 |
+
x: [b, h, l, d]
|
337 |
+
y: [h or 1, m, d]
|
338 |
+
ret: [b, h, l, m]
|
339 |
+
"""
|
340 |
+
ret = torch.matmul(x, y.unsqueeze(0).transpose(-2, -1))
|
341 |
+
return ret
|
342 |
+
|
343 |
+
def _get_relative_embeddings(self, relative_embeddings, length):
|
344 |
+
2 * self.window_size + 1
|
345 |
+
# Pad first before slice to avoid using cond ops.
|
346 |
+
pad_length = max(length - (self.window_size + 1), 0)
|
347 |
+
slice_start_position = max((self.window_size + 1) - length, 0)
|
348 |
+
slice_end_position = slice_start_position + 2 * length - 1
|
349 |
+
if pad_length > 0:
|
350 |
+
padded_relative_embeddings = F.pad(
|
351 |
+
relative_embeddings,
|
352 |
+
commons.convert_pad_shape([[0, 0], [pad_length, pad_length], [0, 0]]),
|
353 |
+
)
|
354 |
+
else:
|
355 |
+
padded_relative_embeddings = relative_embeddings
|
356 |
+
used_relative_embeddings = padded_relative_embeddings[
|
357 |
+
:, slice_start_position:slice_end_position
|
358 |
+
]
|
359 |
+
return used_relative_embeddings
|
360 |
+
|
361 |
+
def _relative_position_to_absolute_position(self, x):
|
362 |
+
"""
|
363 |
+
x: [b, h, l, 2*l-1]
|
364 |
+
ret: [b, h, l, l]
|
365 |
+
"""
|
366 |
+
batch, heads, length, _ = x.size()
|
367 |
+
# Concat columns of pad to shift from relative to absolute indexing.
|
368 |
+
x = F.pad(x, commons.convert_pad_shape([[0, 0], [0, 0], [0, 0], [0, 1]]))
|
369 |
+
|
370 |
+
# Concat extra elements so to add up to shape (len+1, 2*len-1).
|
371 |
+
x_flat = x.view([batch, heads, length * 2 * length])
|
372 |
+
x_flat = F.pad(
|
373 |
+
x_flat, commons.convert_pad_shape([[0, 0], [0, 0], [0, length - 1]])
|
374 |
+
)
|
375 |
+
|
376 |
+
# Reshape and slice out the padded elements.
|
377 |
+
x_final = x_flat.view([batch, heads, length + 1, 2 * length - 1])[
|
378 |
+
:, :, :length, length - 1 :
|
379 |
+
]
|
380 |
+
return x_final
|
381 |
+
|
382 |
+
def _absolute_position_to_relative_position(self, x):
|
383 |
+
"""
|
384 |
+
x: [b, h, l, l]
|
385 |
+
ret: [b, h, l, 2*l-1]
|
386 |
+
"""
|
387 |
+
batch, heads, length, _ = x.size()
|
388 |
+
# pad along column
|
389 |
+
x = F.pad(
|
390 |
+
x, commons.convert_pad_shape([[0, 0], [0, 0], [0, 0], [0, length - 1]])
|
391 |
+
)
|
392 |
+
x_flat = x.view([batch, heads, length**2 + length * (length - 1)])
|
393 |
+
# add 0's in the beginning that will skew the elements after reshape
|
394 |
+
x_flat = F.pad(x_flat, commons.convert_pad_shape([[0, 0], [0, 0], [length, 0]]))
|
395 |
+
x_final = x_flat.view([batch, heads, length, 2 * length])[:, :, :, 1:]
|
396 |
+
return x_final
|
397 |
+
|
398 |
+
def _attention_bias_proximal(self, length):
|
399 |
+
"""Bias for self-attention to encourage attention to close positions.
|
400 |
+
Args:
|
401 |
+
length: an integer scalar.
|
402 |
+
Returns:
|
403 |
+
a Tensor with shape [1, 1, length, length]
|
404 |
+
"""
|
405 |
+
r = torch.arange(length, dtype=torch.float32)
|
406 |
+
diff = torch.unsqueeze(r, 0) - torch.unsqueeze(r, 1)
|
407 |
+
return torch.unsqueeze(torch.unsqueeze(-torch.log1p(torch.abs(diff)), 0), 0)
|
408 |
+
|
409 |
+
|
410 |
+
class FFN(nn.Module):
|
411 |
+
def __init__(
|
412 |
+
self,
|
413 |
+
in_channels,
|
414 |
+
out_channels,
|
415 |
+
filter_channels,
|
416 |
+
kernel_size,
|
417 |
+
p_dropout=0.0,
|
418 |
+
activation=None,
|
419 |
+
causal=False,
|
420 |
+
):
|
421 |
+
super().__init__()
|
422 |
+
self.in_channels = in_channels
|
423 |
+
self.out_channels = out_channels
|
424 |
+
self.filter_channels = filter_channels
|
425 |
+
self.kernel_size = kernel_size
|
426 |
+
self.p_dropout = p_dropout
|
427 |
+
self.activation = activation
|
428 |
+
self.causal = causal
|
429 |
+
|
430 |
+
if causal:
|
431 |
+
self.padding = self._causal_padding
|
432 |
+
else:
|
433 |
+
self.padding = self._same_padding
|
434 |
+
|
435 |
+
self.conv_1 = nn.Conv1d(in_channels, filter_channels, kernel_size)
|
436 |
+
self.conv_2 = nn.Conv1d(filter_channels, out_channels, kernel_size)
|
437 |
+
self.drop = nn.Dropout(p_dropout)
|
438 |
+
|
439 |
+
def forward(self, x, x_mask):
|
440 |
+
x = self.conv_1(self.padding(x * x_mask))
|
441 |
+
if self.activation == "gelu":
|
442 |
+
x = x * torch.sigmoid(1.702 * x)
|
443 |
+
else:
|
444 |
+
x = torch.relu(x)
|
445 |
+
x = self.drop(x)
|
446 |
+
x = self.conv_2(self.padding(x * x_mask))
|
447 |
+
return x * x_mask
|
448 |
+
|
449 |
+
def _causal_padding(self, x):
|
450 |
+
if self.kernel_size == 1:
|
451 |
+
return x
|
452 |
+
pad_l = self.kernel_size - 1
|
453 |
+
pad_r = 0
|
454 |
+
padding = [[0, 0], [0, 0], [pad_l, pad_r]]
|
455 |
+
x = F.pad(x, commons.convert_pad_shape(padding))
|
456 |
+
return x
|
457 |
+
|
458 |
+
def _same_padding(self, x):
|
459 |
+
if self.kernel_size == 1:
|
460 |
+
return x
|
461 |
+
pad_l = (self.kernel_size - 1) // 2
|
462 |
+
pad_r = self.kernel_size // 2
|
463 |
+
padding = [[0, 0], [0, 0], [pad_l, pad_r]]
|
464 |
+
x = F.pad(x, commons.convert_pad_shape(padding))
|
465 |
+
return x
|
base_audio.mp3
ADDED
Binary file (95.3 kB). View file
|
|
commons.py
ADDED
@@ -0,0 +1,160 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import math
|
2 |
+
import torch
|
3 |
+
from torch.nn import functional as F
|
4 |
+
|
5 |
+
|
6 |
+
def init_weights(m, mean=0.0, std=0.01):
|
7 |
+
classname = m.__class__.__name__
|
8 |
+
if classname.find("Conv") != -1:
|
9 |
+
m.weight.data.normal_(mean, std)
|
10 |
+
|
11 |
+
|
12 |
+
def get_padding(kernel_size, dilation=1):
|
13 |
+
return int((kernel_size * dilation - dilation) / 2)
|
14 |
+
|
15 |
+
|
16 |
+
def convert_pad_shape(pad_shape):
|
17 |
+
layer = pad_shape[::-1]
|
18 |
+
pad_shape = [item for sublist in layer for item in sublist]
|
19 |
+
return pad_shape
|
20 |
+
|
21 |
+
|
22 |
+
def intersperse(lst, item):
|
23 |
+
result = [item] * (len(lst) * 2 + 1)
|
24 |
+
result[1::2] = lst
|
25 |
+
return result
|
26 |
+
|
27 |
+
|
28 |
+
def kl_divergence(m_p, logs_p, m_q, logs_q):
|
29 |
+
"""KL(P||Q)"""
|
30 |
+
kl = (logs_q - logs_p) - 0.5
|
31 |
+
kl += (
|
32 |
+
0.5 * (torch.exp(2.0 * logs_p) + ((m_p - m_q) ** 2)) * torch.exp(-2.0 * logs_q)
|
33 |
+
)
|
34 |
+
return kl
|
35 |
+
|
36 |
+
|
37 |
+
def rand_gumbel(shape):
|
38 |
+
"""Sample from the Gumbel distribution, protect from overflows."""
|
39 |
+
uniform_samples = torch.rand(shape) * 0.99998 + 0.00001
|
40 |
+
return -torch.log(-torch.log(uniform_samples))
|
41 |
+
|
42 |
+
|
43 |
+
def rand_gumbel_like(x):
|
44 |
+
g = rand_gumbel(x.size()).to(dtype=x.dtype, device=x.device)
|
45 |
+
return g
|
46 |
+
|
47 |
+
|
48 |
+
def slice_segments(x, ids_str, segment_size=4):
|
49 |
+
ret = torch.zeros_like(x[:, :, :segment_size])
|
50 |
+
for i in range(x.size(0)):
|
51 |
+
idx_str = ids_str[i]
|
52 |
+
idx_end = idx_str + segment_size
|
53 |
+
ret[i] = x[i, :, idx_str:idx_end]
|
54 |
+
return ret
|
55 |
+
|
56 |
+
|
57 |
+
def rand_slice_segments(x, x_lengths=None, segment_size=4):
|
58 |
+
b, d, t = x.size()
|
59 |
+
if x_lengths is None:
|
60 |
+
x_lengths = t
|
61 |
+
ids_str_max = x_lengths - segment_size + 1
|
62 |
+
ids_str = (torch.rand([b]).to(device=x.device) * ids_str_max).to(dtype=torch.long)
|
63 |
+
ret = slice_segments(x, ids_str, segment_size)
|
64 |
+
return ret, ids_str
|
65 |
+
|
66 |
+
|
67 |
+
def get_timing_signal_1d(length, channels, min_timescale=1.0, max_timescale=1.0e4):
|
68 |
+
position = torch.arange(length, dtype=torch.float)
|
69 |
+
num_timescales = channels // 2
|
70 |
+
log_timescale_increment = math.log(float(max_timescale) / float(min_timescale)) / (
|
71 |
+
num_timescales - 1
|
72 |
+
)
|
73 |
+
inv_timescales = min_timescale * torch.exp(
|
74 |
+
torch.arange(num_timescales, dtype=torch.float) * -log_timescale_increment
|
75 |
+
)
|
76 |
+
scaled_time = position.unsqueeze(0) * inv_timescales.unsqueeze(1)
|
77 |
+
signal = torch.cat([torch.sin(scaled_time), torch.cos(scaled_time)], 0)
|
78 |
+
signal = F.pad(signal, [0, 0, 0, channels % 2])
|
79 |
+
signal = signal.view(1, channels, length)
|
80 |
+
return signal
|
81 |
+
|
82 |
+
|
83 |
+
def add_timing_signal_1d(x, min_timescale=1.0, max_timescale=1.0e4):
|
84 |
+
b, channels, length = x.size()
|
85 |
+
signal = get_timing_signal_1d(length, channels, min_timescale, max_timescale)
|
86 |
+
return x + signal.to(dtype=x.dtype, device=x.device)
|
87 |
+
|
88 |
+
|
89 |
+
def cat_timing_signal_1d(x, min_timescale=1.0, max_timescale=1.0e4, axis=1):
|
90 |
+
b, channels, length = x.size()
|
91 |
+
signal = get_timing_signal_1d(length, channels, min_timescale, max_timescale)
|
92 |
+
return torch.cat([x, signal.to(dtype=x.dtype, device=x.device)], axis)
|
93 |
+
|
94 |
+
|
95 |
+
def subsequent_mask(length):
|
96 |
+
mask = torch.tril(torch.ones(length, length)).unsqueeze(0).unsqueeze(0)
|
97 |
+
return mask
|
98 |
+
|
99 |
+
|
100 |
+
@torch.jit.script
|
101 |
+
def fused_add_tanh_sigmoid_multiply(input_a, input_b, n_channels):
|
102 |
+
n_channels_int = n_channels[0]
|
103 |
+
in_act = input_a + input_b
|
104 |
+
t_act = torch.tanh(in_act[:, :n_channels_int, :])
|
105 |
+
s_act = torch.sigmoid(in_act[:, n_channels_int:, :])
|
106 |
+
acts = t_act * s_act
|
107 |
+
return acts
|
108 |
+
|
109 |
+
|
110 |
+
def convert_pad_shape(pad_shape):
|
111 |
+
layer = pad_shape[::-1]
|
112 |
+
pad_shape = [item for sublist in layer for item in sublist]
|
113 |
+
return pad_shape
|
114 |
+
|
115 |
+
|
116 |
+
def shift_1d(x):
|
117 |
+
x = F.pad(x, convert_pad_shape([[0, 0], [0, 0], [1, 0]]))[:, :, :-1]
|
118 |
+
return x
|
119 |
+
|
120 |
+
|
121 |
+
def sequence_mask(length, max_length=None):
|
122 |
+
if max_length is None:
|
123 |
+
max_length = length.max()
|
124 |
+
x = torch.arange(max_length, dtype=length.dtype, device=length.device)
|
125 |
+
return x.unsqueeze(0) < length.unsqueeze(1)
|
126 |
+
|
127 |
+
|
128 |
+
def generate_path(duration, mask):
|
129 |
+
"""
|
130 |
+
duration: [b, 1, t_x]
|
131 |
+
mask: [b, 1, t_y, t_x]
|
132 |
+
"""
|
133 |
+
|
134 |
+
b, _, t_y, t_x = mask.shape
|
135 |
+
cum_duration = torch.cumsum(duration, -1)
|
136 |
+
|
137 |
+
cum_duration_flat = cum_duration.view(b * t_x)
|
138 |
+
path = sequence_mask(cum_duration_flat, t_y).to(mask.dtype)
|
139 |
+
path = path.view(b, t_x, t_y)
|
140 |
+
path = path - F.pad(path, convert_pad_shape([[0, 0], [1, 0], [0, 0]]))[:, :-1]
|
141 |
+
path = path.unsqueeze(1).transpose(2, 3) * mask
|
142 |
+
return path
|
143 |
+
|
144 |
+
|
145 |
+
def clip_grad_value_(parameters, clip_value, norm_type=2):
|
146 |
+
if isinstance(parameters, torch.Tensor):
|
147 |
+
parameters = [parameters]
|
148 |
+
parameters = list(filter(lambda p: p.grad is not None, parameters))
|
149 |
+
norm_type = float(norm_type)
|
150 |
+
if clip_value is not None:
|
151 |
+
clip_value = float(clip_value)
|
152 |
+
|
153 |
+
total_norm = 0
|
154 |
+
for p in parameters:
|
155 |
+
param_norm = p.grad.data.norm(norm_type)
|
156 |
+
total_norm += param_norm.item() ** norm_type
|
157 |
+
if clip_value is not None:
|
158 |
+
p.grad.data.clamp_(min=-clip_value, max=clip_value)
|
159 |
+
total_norm = total_norm ** (1.0 / norm_type)
|
160 |
+
return total_norm
|
mel_processing.py
ADDED
@@ -0,0 +1,183 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import torch
|
2 |
+
import torch.utils.data
|
3 |
+
from librosa.filters import mel as librosa_mel_fn
|
4 |
+
|
5 |
+
MAX_WAV_VALUE = 32768.0
|
6 |
+
|
7 |
+
|
8 |
+
def dynamic_range_compression_torch(x, C=1, clip_val=1e-5):
|
9 |
+
"""
|
10 |
+
PARAMS
|
11 |
+
------
|
12 |
+
C: compression factor
|
13 |
+
"""
|
14 |
+
return torch.log(torch.clamp(x, min=clip_val) * C)
|
15 |
+
|
16 |
+
|
17 |
+
def dynamic_range_decompression_torch(x, C=1):
|
18 |
+
"""
|
19 |
+
PARAMS
|
20 |
+
------
|
21 |
+
C: compression factor used to compress
|
22 |
+
"""
|
23 |
+
return torch.exp(x) / C
|
24 |
+
|
25 |
+
|
26 |
+
def spectral_normalize_torch(magnitudes):
|
27 |
+
output = dynamic_range_compression_torch(magnitudes)
|
28 |
+
return output
|
29 |
+
|
30 |
+
|
31 |
+
def spectral_de_normalize_torch(magnitudes):
|
32 |
+
output = dynamic_range_decompression_torch(magnitudes)
|
33 |
+
return output
|
34 |
+
|
35 |
+
|
36 |
+
mel_basis = {}
|
37 |
+
hann_window = {}
|
38 |
+
|
39 |
+
|
40 |
+
def spectrogram_torch(y, n_fft, sampling_rate, hop_size, win_size, center=False):
|
41 |
+
if torch.min(y) < -1.1:
|
42 |
+
print("min value is ", torch.min(y))
|
43 |
+
if torch.max(y) > 1.1:
|
44 |
+
print("max value is ", torch.max(y))
|
45 |
+
|
46 |
+
global hann_window
|
47 |
+
dtype_device = str(y.dtype) + "_" + str(y.device)
|
48 |
+
wnsize_dtype_device = str(win_size) + "_" + dtype_device
|
49 |
+
if wnsize_dtype_device not in hann_window:
|
50 |
+
hann_window[wnsize_dtype_device] = torch.hann_window(win_size).to(
|
51 |
+
dtype=y.dtype, device=y.device
|
52 |
+
)
|
53 |
+
|
54 |
+
y = torch.nn.functional.pad(
|
55 |
+
y.unsqueeze(1),
|
56 |
+
(int((n_fft - hop_size) / 2), int((n_fft - hop_size) / 2)),
|
57 |
+
mode="reflect",
|
58 |
+
)
|
59 |
+
y = y.squeeze(1)
|
60 |
+
|
61 |
+
spec = torch.stft(
|
62 |
+
y,
|
63 |
+
n_fft,
|
64 |
+
hop_length=hop_size,
|
65 |
+
win_length=win_size,
|
66 |
+
window=hann_window[wnsize_dtype_device],
|
67 |
+
center=center,
|
68 |
+
pad_mode="reflect",
|
69 |
+
normalized=False,
|
70 |
+
onesided=True,
|
71 |
+
return_complex=False,
|
72 |
+
)
|
73 |
+
|
74 |
+
spec = torch.sqrt(spec.pow(2).sum(-1) + 1e-6)
|
75 |
+
return spec
|
76 |
+
|
77 |
+
|
78 |
+
def spectrogram_torch_conv(y, n_fft, sampling_rate, hop_size, win_size, center=False):
|
79 |
+
# if torch.min(y) < -1.:
|
80 |
+
# print('min value is ', torch.min(y))
|
81 |
+
# if torch.max(y) > 1.:
|
82 |
+
# print('max value is ', torch.max(y))
|
83 |
+
|
84 |
+
global hann_window
|
85 |
+
dtype_device = str(y.dtype) + '_' + str(y.device)
|
86 |
+
wnsize_dtype_device = str(win_size) + '_' + dtype_device
|
87 |
+
if wnsize_dtype_device not in hann_window:
|
88 |
+
hann_window[wnsize_dtype_device] = torch.hann_window(win_size).to(dtype=y.dtype, device=y.device)
|
89 |
+
|
90 |
+
y = torch.nn.functional.pad(y.unsqueeze(1), (int((n_fft-hop_size)/2), int((n_fft-hop_size)/2)), mode='reflect')
|
91 |
+
|
92 |
+
# ******************** original ************************#
|
93 |
+
# y = y.squeeze(1)
|
94 |
+
# spec1 = torch.stft(y, n_fft, hop_length=hop_size, win_length=win_size, window=hann_window[wnsize_dtype_device],
|
95 |
+
# center=center, pad_mode='reflect', normalized=False, onesided=True, return_complex=False)
|
96 |
+
|
97 |
+
# ******************** ConvSTFT ************************#
|
98 |
+
freq_cutoff = n_fft // 2 + 1
|
99 |
+
fourier_basis = torch.view_as_real(torch.fft.fft(torch.eye(n_fft)))
|
100 |
+
forward_basis = fourier_basis[:freq_cutoff].permute(2, 0, 1).reshape(-1, 1, fourier_basis.shape[1])
|
101 |
+
forward_basis = forward_basis * torch.as_tensor(librosa.util.pad_center(torch.hann_window(win_size), size=n_fft)).float()
|
102 |
+
|
103 |
+
import torch.nn.functional as F
|
104 |
+
|
105 |
+
# if center:
|
106 |
+
# signal = F.pad(y[:, None, None, :], (n_fft // 2, n_fft // 2, 0, 0), mode = 'reflect').squeeze(1)
|
107 |
+
assert center is False
|
108 |
+
|
109 |
+
forward_transform_squared = F.conv1d(y, forward_basis.to(y.device), stride = hop_size)
|
110 |
+
spec2 = torch.stack([forward_transform_squared[:, :freq_cutoff, :], forward_transform_squared[:, freq_cutoff:, :]], dim = -1)
|
111 |
+
|
112 |
+
|
113 |
+
# ******************** Verification ************************#
|
114 |
+
spec1 = torch.stft(y.squeeze(1), n_fft, hop_length=hop_size, win_length=win_size, window=hann_window[wnsize_dtype_device],
|
115 |
+
center=center, pad_mode='reflect', normalized=False, onesided=True, return_complex=False)
|
116 |
+
assert torch.allclose(spec1, spec2, atol=1e-4)
|
117 |
+
|
118 |
+
spec = torch.sqrt(spec2.pow(2).sum(-1) + 1e-6)
|
119 |
+
return spec
|
120 |
+
|
121 |
+
|
122 |
+
def spec_to_mel_torch(spec, n_fft, num_mels, sampling_rate, fmin, fmax):
|
123 |
+
global mel_basis
|
124 |
+
dtype_device = str(spec.dtype) + "_" + str(spec.device)
|
125 |
+
fmax_dtype_device = str(fmax) + "_" + dtype_device
|
126 |
+
if fmax_dtype_device not in mel_basis:
|
127 |
+
mel = librosa_mel_fn(sampling_rate, n_fft, num_mels, fmin, fmax)
|
128 |
+
mel_basis[fmax_dtype_device] = torch.from_numpy(mel).to(
|
129 |
+
dtype=spec.dtype, device=spec.device
|
130 |
+
)
|
131 |
+
spec = torch.matmul(mel_basis[fmax_dtype_device], spec)
|
132 |
+
spec = spectral_normalize_torch(spec)
|
133 |
+
return spec
|
134 |
+
|
135 |
+
|
136 |
+
def mel_spectrogram_torch(
|
137 |
+
y, n_fft, num_mels, sampling_rate, hop_size, win_size, fmin, fmax, center=False
|
138 |
+
):
|
139 |
+
if torch.min(y) < -1.0:
|
140 |
+
print("min value is ", torch.min(y))
|
141 |
+
if torch.max(y) > 1.0:
|
142 |
+
print("max value is ", torch.max(y))
|
143 |
+
|
144 |
+
global mel_basis, hann_window
|
145 |
+
dtype_device = str(y.dtype) + "_" + str(y.device)
|
146 |
+
fmax_dtype_device = str(fmax) + "_" + dtype_device
|
147 |
+
wnsize_dtype_device = str(win_size) + "_" + dtype_device
|
148 |
+
if fmax_dtype_device not in mel_basis:
|
149 |
+
mel = librosa_mel_fn(sampling_rate, n_fft, num_mels, fmin, fmax)
|
150 |
+
mel_basis[fmax_dtype_device] = torch.from_numpy(mel).to(
|
151 |
+
dtype=y.dtype, device=y.device
|
152 |
+
)
|
153 |
+
if wnsize_dtype_device not in hann_window:
|
154 |
+
hann_window[wnsize_dtype_device] = torch.hann_window(win_size).to(
|
155 |
+
dtype=y.dtype, device=y.device
|
156 |
+
)
|
157 |
+
|
158 |
+
y = torch.nn.functional.pad(
|
159 |
+
y.unsqueeze(1),
|
160 |
+
(int((n_fft - hop_size) / 2), int((n_fft - hop_size) / 2)),
|
161 |
+
mode="reflect",
|
162 |
+
)
|
163 |
+
y = y.squeeze(1)
|
164 |
+
|
165 |
+
spec = torch.stft(
|
166 |
+
y,
|
167 |
+
n_fft,
|
168 |
+
hop_length=hop_size,
|
169 |
+
win_length=win_size,
|
170 |
+
window=hann_window[wnsize_dtype_device],
|
171 |
+
center=center,
|
172 |
+
pad_mode="reflect",
|
173 |
+
normalized=False,
|
174 |
+
onesided=True,
|
175 |
+
return_complex=False,
|
176 |
+
)
|
177 |
+
|
178 |
+
spec = torch.sqrt(spec.pow(2).sum(-1) + 1e-6)
|
179 |
+
|
180 |
+
spec = torch.matmul(mel_basis[fmax_dtype_device], spec)
|
181 |
+
spec = spectral_normalize_torch(spec)
|
182 |
+
|
183 |
+
return spec
|
models.py
ADDED
@@ -0,0 +1,497 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import math
|
2 |
+
import torch
|
3 |
+
from torch import nn
|
4 |
+
from torch.nn import functional as F
|
5 |
+
|
6 |
+
import commons
|
7 |
+
import modules
|
8 |
+
import attentions
|
9 |
+
|
10 |
+
from torch.nn import Conv1d, ConvTranspose1d, Conv2d
|
11 |
+
from torch.nn.utils import weight_norm, remove_weight_norm, spectral_norm
|
12 |
+
|
13 |
+
from commons import init_weights, get_padding
|
14 |
+
|
15 |
+
|
16 |
+
class TextEncoder(nn.Module):
|
17 |
+
def __init__(self,
|
18 |
+
n_vocab,
|
19 |
+
out_channels,
|
20 |
+
hidden_channels,
|
21 |
+
filter_channels,
|
22 |
+
n_heads,
|
23 |
+
n_layers,
|
24 |
+
kernel_size,
|
25 |
+
p_dropout):
|
26 |
+
super().__init__()
|
27 |
+
self.n_vocab = n_vocab
|
28 |
+
self.out_channels = out_channels
|
29 |
+
self.hidden_channels = hidden_channels
|
30 |
+
self.filter_channels = filter_channels
|
31 |
+
self.n_heads = n_heads
|
32 |
+
self.n_layers = n_layers
|
33 |
+
self.kernel_size = kernel_size
|
34 |
+
self.p_dropout = p_dropout
|
35 |
+
|
36 |
+
self.emb = nn.Embedding(n_vocab, hidden_channels)
|
37 |
+
nn.init.normal_(self.emb.weight, 0.0, hidden_channels**-0.5)
|
38 |
+
|
39 |
+
self.encoder = attentions.Encoder(
|
40 |
+
hidden_channels,
|
41 |
+
filter_channels,
|
42 |
+
n_heads,
|
43 |
+
n_layers,
|
44 |
+
kernel_size,
|
45 |
+
p_dropout)
|
46 |
+
self.proj= nn.Conv1d(hidden_channels, out_channels * 2, 1)
|
47 |
+
|
48 |
+
def forward(self, x, x_lengths):
|
49 |
+
x = self.emb(x) * math.sqrt(self.hidden_channels) # [b, t, h]
|
50 |
+
x = torch.transpose(x, 1, -1) # [b, h, t]
|
51 |
+
x_mask = torch.unsqueeze(commons.sequence_mask(x_lengths, x.size(2)), 1).to(x.dtype)
|
52 |
+
|
53 |
+
x = self.encoder(x * x_mask, x_mask)
|
54 |
+
stats = self.proj(x) * x_mask
|
55 |
+
|
56 |
+
m, logs = torch.split(stats, self.out_channels, dim=1)
|
57 |
+
return x, m, logs, x_mask
|
58 |
+
|
59 |
+
|
60 |
+
class DurationPredictor(nn.Module):
|
61 |
+
def __init__(
|
62 |
+
self, in_channels, filter_channels, kernel_size, p_dropout, gin_channels=0
|
63 |
+
):
|
64 |
+
super().__init__()
|
65 |
+
|
66 |
+
self.in_channels = in_channels
|
67 |
+
self.filter_channels = filter_channels
|
68 |
+
self.kernel_size = kernel_size
|
69 |
+
self.p_dropout = p_dropout
|
70 |
+
self.gin_channels = gin_channels
|
71 |
+
|
72 |
+
self.drop = nn.Dropout(p_dropout)
|
73 |
+
self.conv_1 = nn.Conv1d(
|
74 |
+
in_channels, filter_channels, kernel_size, padding=kernel_size // 2
|
75 |
+
)
|
76 |
+
self.norm_1 = modules.LayerNorm(filter_channels)
|
77 |
+
self.conv_2 = nn.Conv1d(
|
78 |
+
filter_channels, filter_channels, kernel_size, padding=kernel_size // 2
|
79 |
+
)
|
80 |
+
self.norm_2 = modules.LayerNorm(filter_channels)
|
81 |
+
self.proj = nn.Conv1d(filter_channels, 1, 1)
|
82 |
+
|
83 |
+
if gin_channels != 0:
|
84 |
+
self.cond = nn.Conv1d(gin_channels, in_channels, 1)
|
85 |
+
|
86 |
+
def forward(self, x, x_mask, g=None):
|
87 |
+
x = torch.detach(x)
|
88 |
+
if g is not None:
|
89 |
+
g = torch.detach(g)
|
90 |
+
x = x + self.cond(g)
|
91 |
+
x = self.conv_1(x * x_mask)
|
92 |
+
x = torch.relu(x)
|
93 |
+
x = self.norm_1(x)
|
94 |
+
x = self.drop(x)
|
95 |
+
x = self.conv_2(x * x_mask)
|
96 |
+
x = torch.relu(x)
|
97 |
+
x = self.norm_2(x)
|
98 |
+
x = self.drop(x)
|
99 |
+
x = self.proj(x * x_mask)
|
100 |
+
return x * x_mask
|
101 |
+
|
102 |
+
class StochasticDurationPredictor(nn.Module):
|
103 |
+
def __init__(self, in_channels, filter_channels, kernel_size, p_dropout, n_flows=4, gin_channels=0):
|
104 |
+
super().__init__()
|
105 |
+
filter_channels = in_channels # it needs to be removed from future version.
|
106 |
+
self.in_channels = in_channels
|
107 |
+
self.filter_channels = filter_channels
|
108 |
+
self.kernel_size = kernel_size
|
109 |
+
self.p_dropout = p_dropout
|
110 |
+
self.n_flows = n_flows
|
111 |
+
self.gin_channels = gin_channels
|
112 |
+
|
113 |
+
self.log_flow = modules.Log()
|
114 |
+
self.flows = nn.ModuleList()
|
115 |
+
self.flows.append(modules.ElementwiseAffine(2))
|
116 |
+
for i in range(n_flows):
|
117 |
+
self.flows.append(modules.ConvFlow(2, filter_channels, kernel_size, n_layers=3))
|
118 |
+
self.flows.append(modules.Flip())
|
119 |
+
|
120 |
+
self.post_pre = nn.Conv1d(1, filter_channels, 1)
|
121 |
+
self.post_proj = nn.Conv1d(filter_channels, filter_channels, 1)
|
122 |
+
self.post_convs = modules.DDSConv(filter_channels, kernel_size, n_layers=3, p_dropout=p_dropout)
|
123 |
+
self.post_flows = nn.ModuleList()
|
124 |
+
self.post_flows.append(modules.ElementwiseAffine(2))
|
125 |
+
for i in range(4):
|
126 |
+
self.post_flows.append(modules.ConvFlow(2, filter_channels, kernel_size, n_layers=3))
|
127 |
+
self.post_flows.append(modules.Flip())
|
128 |
+
|
129 |
+
self.pre = nn.Conv1d(in_channels, filter_channels, 1)
|
130 |
+
self.proj = nn.Conv1d(filter_channels, filter_channels, 1)
|
131 |
+
self.convs = modules.DDSConv(filter_channels, kernel_size, n_layers=3, p_dropout=p_dropout)
|
132 |
+
if gin_channels != 0:
|
133 |
+
self.cond = nn.Conv1d(gin_channels, filter_channels, 1)
|
134 |
+
|
135 |
+
def forward(self, x, x_mask, w=None, g=None, reverse=False, noise_scale=1.0):
|
136 |
+
x = torch.detach(x)
|
137 |
+
x = self.pre(x)
|
138 |
+
if g is not None:
|
139 |
+
g = torch.detach(g)
|
140 |
+
x = x + self.cond(g)
|
141 |
+
x = self.convs(x, x_mask)
|
142 |
+
x = self.proj(x) * x_mask
|
143 |
+
|
144 |
+
if not reverse:
|
145 |
+
flows = self.flows
|
146 |
+
assert w is not None
|
147 |
+
|
148 |
+
logdet_tot_q = 0
|
149 |
+
h_w = self.post_pre(w)
|
150 |
+
h_w = self.post_convs(h_w, x_mask)
|
151 |
+
h_w = self.post_proj(h_w) * x_mask
|
152 |
+
e_q = torch.randn(w.size(0), 2, w.size(2)).to(device=x.device, dtype=x.dtype) * x_mask
|
153 |
+
z_q = e_q
|
154 |
+
for flow in self.post_flows:
|
155 |
+
z_q, logdet_q = flow(z_q, x_mask, g=(x + h_w))
|
156 |
+
logdet_tot_q += logdet_q
|
157 |
+
z_u, z1 = torch.split(z_q, [1, 1], 1)
|
158 |
+
u = torch.sigmoid(z_u) * x_mask
|
159 |
+
z0 = (w - u) * x_mask
|
160 |
+
logdet_tot_q += torch.sum((F.logsigmoid(z_u) + F.logsigmoid(-z_u)) * x_mask, [1,2])
|
161 |
+
logq = torch.sum(-0.5 * (math.log(2*math.pi) + (e_q**2)) * x_mask, [1,2]) - logdet_tot_q
|
162 |
+
|
163 |
+
logdet_tot = 0
|
164 |
+
z0, logdet = self.log_flow(z0, x_mask)
|
165 |
+
logdet_tot += logdet
|
166 |
+
z = torch.cat([z0, z1], 1)
|
167 |
+
for flow in flows:
|
168 |
+
z, logdet = flow(z, x_mask, g=x, reverse=reverse)
|
169 |
+
logdet_tot = logdet_tot + logdet
|
170 |
+
nll = torch.sum(0.5 * (math.log(2*math.pi) + (z**2)) * x_mask, [1,2]) - logdet_tot
|
171 |
+
return nll + logq # [b]
|
172 |
+
else:
|
173 |
+
flows = list(reversed(self.flows))
|
174 |
+
flows = flows[:-2] + [flows[-1]] # remove a useless vflow
|
175 |
+
z = torch.randn(x.size(0), 2, x.size(2)).to(device=x.device, dtype=x.dtype) * noise_scale
|
176 |
+
for flow in flows:
|
177 |
+
z = flow(z, x_mask, g=x, reverse=reverse)
|
178 |
+
z0, z1 = torch.split(z, [1, 1], 1)
|
179 |
+
logw = z0
|
180 |
+
return logw
|
181 |
+
|
182 |
+
class PosteriorEncoder(nn.Module):
|
183 |
+
def __init__(
|
184 |
+
self,
|
185 |
+
in_channels,
|
186 |
+
out_channels,
|
187 |
+
hidden_channels,
|
188 |
+
kernel_size,
|
189 |
+
dilation_rate,
|
190 |
+
n_layers,
|
191 |
+
gin_channels=0,
|
192 |
+
):
|
193 |
+
super().__init__()
|
194 |
+
self.in_channels = in_channels
|
195 |
+
self.out_channels = out_channels
|
196 |
+
self.hidden_channels = hidden_channels
|
197 |
+
self.kernel_size = kernel_size
|
198 |
+
self.dilation_rate = dilation_rate
|
199 |
+
self.n_layers = n_layers
|
200 |
+
self.gin_channels = gin_channels
|
201 |
+
|
202 |
+
self.pre = nn.Conv1d(in_channels, hidden_channels, 1)
|
203 |
+
self.enc = modules.WN(
|
204 |
+
hidden_channels,
|
205 |
+
kernel_size,
|
206 |
+
dilation_rate,
|
207 |
+
n_layers,
|
208 |
+
gin_channels=gin_channels,
|
209 |
+
)
|
210 |
+
self.proj = nn.Conv1d(hidden_channels, out_channels * 2, 1)
|
211 |
+
|
212 |
+
def forward(self, x, x_lengths, g=None, tau=1.0):
|
213 |
+
x_mask = torch.unsqueeze(commons.sequence_mask(x_lengths, x.size(2)), 1).to(
|
214 |
+
x.dtype
|
215 |
+
)
|
216 |
+
x = self.pre(x) * x_mask
|
217 |
+
x = self.enc(x, x_mask, g=g)
|
218 |
+
stats = self.proj(x) * x_mask
|
219 |
+
m, logs = torch.split(stats, self.out_channels, dim=1)
|
220 |
+
z = (m + torch.randn_like(m) * tau * torch.exp(logs)) * x_mask
|
221 |
+
return z, m, logs, x_mask
|
222 |
+
|
223 |
+
|
224 |
+
class Generator(torch.nn.Module):
|
225 |
+
def __init__(
|
226 |
+
self,
|
227 |
+
initial_channel,
|
228 |
+
resblock,
|
229 |
+
resblock_kernel_sizes,
|
230 |
+
resblock_dilation_sizes,
|
231 |
+
upsample_rates,
|
232 |
+
upsample_initial_channel,
|
233 |
+
upsample_kernel_sizes,
|
234 |
+
gin_channels=0,
|
235 |
+
):
|
236 |
+
super(Generator, self).__init__()
|
237 |
+
self.num_kernels = len(resblock_kernel_sizes)
|
238 |
+
self.num_upsamples = len(upsample_rates)
|
239 |
+
self.conv_pre = Conv1d(
|
240 |
+
initial_channel, upsample_initial_channel, 7, 1, padding=3
|
241 |
+
)
|
242 |
+
resblock = modules.ResBlock1 if resblock == "1" else modules.ResBlock2
|
243 |
+
|
244 |
+
self.ups = nn.ModuleList()
|
245 |
+
for i, (u, k) in enumerate(zip(upsample_rates, upsample_kernel_sizes)):
|
246 |
+
self.ups.append(
|
247 |
+
weight_norm(
|
248 |
+
ConvTranspose1d(
|
249 |
+
upsample_initial_channel // (2**i),
|
250 |
+
upsample_initial_channel // (2 ** (i + 1)),
|
251 |
+
k,
|
252 |
+
u,
|
253 |
+
padding=(k - u) // 2,
|
254 |
+
)
|
255 |
+
)
|
256 |
+
)
|
257 |
+
|
258 |
+
self.resblocks = nn.ModuleList()
|
259 |
+
for i in range(len(self.ups)):
|
260 |
+
ch = upsample_initial_channel // (2 ** (i + 1))
|
261 |
+
for j, (k, d) in enumerate(
|
262 |
+
zip(resblock_kernel_sizes, resblock_dilation_sizes)
|
263 |
+
):
|
264 |
+
self.resblocks.append(resblock(ch, k, d))
|
265 |
+
|
266 |
+
self.conv_post = Conv1d(ch, 1, 7, 1, padding=3, bias=False)
|
267 |
+
self.ups.apply(init_weights)
|
268 |
+
|
269 |
+
if gin_channels != 0:
|
270 |
+
self.cond = nn.Conv1d(gin_channels, upsample_initial_channel, 1)
|
271 |
+
|
272 |
+
def forward(self, x, g=None):
|
273 |
+
x = self.conv_pre(x)
|
274 |
+
if g is not None:
|
275 |
+
x = x + self.cond(g)
|
276 |
+
|
277 |
+
for i in range(self.num_upsamples):
|
278 |
+
x = F.leaky_relu(x, modules.LRELU_SLOPE)
|
279 |
+
x = self.ups[i](x)
|
280 |
+
xs = None
|
281 |
+
for j in range(self.num_kernels):
|
282 |
+
if xs is None:
|
283 |
+
xs = self.resblocks[i * self.num_kernels + j](x)
|
284 |
+
else:
|
285 |
+
xs += self.resblocks[i * self.num_kernels + j](x)
|
286 |
+
x = xs / self.num_kernels
|
287 |
+
x = F.leaky_relu(x)
|
288 |
+
x = self.conv_post(x)
|
289 |
+
x = torch.tanh(x)
|
290 |
+
|
291 |
+
return x
|
292 |
+
|
293 |
+
def remove_weight_norm(self):
|
294 |
+
print("Removing weight norm...")
|
295 |
+
for layer in self.ups:
|
296 |
+
remove_weight_norm(layer)
|
297 |
+
for layer in self.resblocks:
|
298 |
+
layer.remove_weight_norm()
|
299 |
+
|
300 |
+
|
301 |
+
class ReferenceEncoder(nn.Module):
|
302 |
+
"""
|
303 |
+
inputs --- [N, Ty/r, n_mels*r] mels
|
304 |
+
outputs --- [N, ref_enc_gru_size]
|
305 |
+
"""
|
306 |
+
|
307 |
+
def __init__(self, spec_channels, gin_channels=0, layernorm=True):
|
308 |
+
super().__init__()
|
309 |
+
self.spec_channels = spec_channels
|
310 |
+
ref_enc_filters = [32, 32, 64, 64, 128, 128]
|
311 |
+
K = len(ref_enc_filters)
|
312 |
+
filters = [1] + ref_enc_filters
|
313 |
+
convs = [
|
314 |
+
weight_norm(
|
315 |
+
nn.Conv2d(
|
316 |
+
in_channels=filters[i],
|
317 |
+
out_channels=filters[i + 1],
|
318 |
+
kernel_size=(3, 3),
|
319 |
+
stride=(2, 2),
|
320 |
+
padding=(1, 1),
|
321 |
+
)
|
322 |
+
)
|
323 |
+
for i in range(K)
|
324 |
+
]
|
325 |
+
self.convs = nn.ModuleList(convs)
|
326 |
+
|
327 |
+
out_channels = self.calculate_channels(spec_channels, 3, 2, 1, K)
|
328 |
+
self.gru = nn.GRU(
|
329 |
+
input_size=ref_enc_filters[-1] * out_channels,
|
330 |
+
hidden_size=256 // 2,
|
331 |
+
batch_first=True,
|
332 |
+
)
|
333 |
+
self.proj = nn.Linear(128, gin_channels)
|
334 |
+
if layernorm:
|
335 |
+
self.layernorm = nn.LayerNorm(self.spec_channels)
|
336 |
+
else:
|
337 |
+
self.layernorm = None
|
338 |
+
|
339 |
+
def forward(self, inputs, mask=None):
|
340 |
+
N = inputs.size(0)
|
341 |
+
|
342 |
+
out = inputs.view(N, 1, -1, self.spec_channels) # [N, 1, Ty, n_freqs]
|
343 |
+
if self.layernorm is not None:
|
344 |
+
out = self.layernorm(out)
|
345 |
+
|
346 |
+
for conv in self.convs:
|
347 |
+
out = conv(out)
|
348 |
+
# out = wn(out)
|
349 |
+
out = F.relu(out) # [N, 128, Ty//2^K, n_mels//2^K]
|
350 |
+
|
351 |
+
out = out.transpose(1, 2) # [N, Ty//2^K, 128, n_mels//2^K]
|
352 |
+
T = out.size(1)
|
353 |
+
N = out.size(0)
|
354 |
+
out = out.contiguous().view(N, T, -1) # [N, Ty//2^K, 128*n_mels//2^K]
|
355 |
+
|
356 |
+
self.gru.flatten_parameters()
|
357 |
+
memory, out = self.gru(out) # out --- [1, N, 128]
|
358 |
+
|
359 |
+
return self.proj(out.squeeze(0))
|
360 |
+
|
361 |
+
def calculate_channels(self, L, kernel_size, stride, pad, n_convs):
|
362 |
+
for i in range(n_convs):
|
363 |
+
L = (L - kernel_size + 2 * pad) // stride + 1
|
364 |
+
return L
|
365 |
+
|
366 |
+
|
367 |
+
class ResidualCouplingBlock(nn.Module):
|
368 |
+
def __init__(self,
|
369 |
+
channels,
|
370 |
+
hidden_channels,
|
371 |
+
kernel_size,
|
372 |
+
dilation_rate,
|
373 |
+
n_layers,
|
374 |
+
n_flows=4,
|
375 |
+
gin_channels=0):
|
376 |
+
super().__init__()
|
377 |
+
self.channels = channels
|
378 |
+
self.hidden_channels = hidden_channels
|
379 |
+
self.kernel_size = kernel_size
|
380 |
+
self.dilation_rate = dilation_rate
|
381 |
+
self.n_layers = n_layers
|
382 |
+
self.n_flows = n_flows
|
383 |
+
self.gin_channels = gin_channels
|
384 |
+
|
385 |
+
self.flows = nn.ModuleList()
|
386 |
+
for i in range(n_flows):
|
387 |
+
self.flows.append(modules.ResidualCouplingLayer(channels, hidden_channels, kernel_size, dilation_rate, n_layers, gin_channels=gin_channels, mean_only=True))
|
388 |
+
self.flows.append(modules.Flip())
|
389 |
+
|
390 |
+
def forward(self, x, x_mask, g=None, reverse=False):
|
391 |
+
if not reverse:
|
392 |
+
for flow in self.flows:
|
393 |
+
x, _ = flow(x, x_mask, g=g, reverse=reverse)
|
394 |
+
else:
|
395 |
+
for flow in reversed(self.flows):
|
396 |
+
x = flow(x, x_mask, g=g, reverse=reverse)
|
397 |
+
return x
|
398 |
+
|
399 |
+
class SynthesizerTrn(nn.Module):
|
400 |
+
"""
|
401 |
+
Synthesizer for Training
|
402 |
+
"""
|
403 |
+
|
404 |
+
def __init__(
|
405 |
+
self,
|
406 |
+
n_vocab,
|
407 |
+
spec_channels,
|
408 |
+
inter_channels,
|
409 |
+
hidden_channels,
|
410 |
+
filter_channels,
|
411 |
+
n_heads,
|
412 |
+
n_layers,
|
413 |
+
kernel_size,
|
414 |
+
p_dropout,
|
415 |
+
resblock,
|
416 |
+
resblock_kernel_sizes,
|
417 |
+
resblock_dilation_sizes,
|
418 |
+
upsample_rates,
|
419 |
+
upsample_initial_channel,
|
420 |
+
upsample_kernel_sizes,
|
421 |
+
n_speakers=256,
|
422 |
+
gin_channels=256,
|
423 |
+
**kwargs
|
424 |
+
):
|
425 |
+
super().__init__()
|
426 |
+
|
427 |
+
self.dec = Generator(
|
428 |
+
inter_channels,
|
429 |
+
resblock,
|
430 |
+
resblock_kernel_sizes,
|
431 |
+
resblock_dilation_sizes,
|
432 |
+
upsample_rates,
|
433 |
+
upsample_initial_channel,
|
434 |
+
upsample_kernel_sizes,
|
435 |
+
gin_channels=gin_channels,
|
436 |
+
)
|
437 |
+
self.enc_q = PosteriorEncoder(
|
438 |
+
spec_channels,
|
439 |
+
inter_channels,
|
440 |
+
hidden_channels,
|
441 |
+
5,
|
442 |
+
1,
|
443 |
+
16,
|
444 |
+
gin_channels=gin_channels,
|
445 |
+
)
|
446 |
+
|
447 |
+
self.flow = ResidualCouplingBlock(inter_channels, hidden_channels, 5, 1, 4, gin_channels=gin_channels)
|
448 |
+
|
449 |
+
self.n_speakers = n_speakers
|
450 |
+
if n_speakers == 0:
|
451 |
+
self.ref_enc = ReferenceEncoder(spec_channels, gin_channels)
|
452 |
+
else:
|
453 |
+
self.enc_p = TextEncoder(n_vocab,
|
454 |
+
inter_channels,
|
455 |
+
hidden_channels,
|
456 |
+
filter_channels,
|
457 |
+
n_heads,
|
458 |
+
n_layers,
|
459 |
+
kernel_size,
|
460 |
+
p_dropout)
|
461 |
+
self.sdp = StochasticDurationPredictor(hidden_channels, 192, 3, 0.5, 4, gin_channels=gin_channels)
|
462 |
+
self.dp = DurationPredictor(hidden_channels, 256, 3, 0.5, gin_channels=gin_channels)
|
463 |
+
self.emb_g = nn.Embedding(n_speakers, gin_channels)
|
464 |
+
|
465 |
+
def infer(self, x, x_lengths, sid=None, noise_scale=1, length_scale=1, noise_scale_w=1., sdp_ratio=0.2, max_len=None):
|
466 |
+
x, m_p, logs_p, x_mask = self.enc_p(x, x_lengths)
|
467 |
+
if self.n_speakers > 0:
|
468 |
+
g = self.emb_g(sid).unsqueeze(-1) # [b, h, 1]
|
469 |
+
else:
|
470 |
+
g = None
|
471 |
+
|
472 |
+
logw = self.sdp(x, x_mask, g=g, reverse=True, noise_scale=noise_scale_w) * sdp_ratio \
|
473 |
+
+ self.dp(x, x_mask, g=g) * (1 - sdp_ratio)
|
474 |
+
|
475 |
+
w = torch.exp(logw) * x_mask * length_scale
|
476 |
+
w_ceil = torch.ceil(w)
|
477 |
+
y_lengths = torch.clamp_min(torch.sum(w_ceil, [1, 2]), 1).long()
|
478 |
+
y_mask = torch.unsqueeze(commons.sequence_mask(y_lengths, None), 1).to(x_mask.dtype)
|
479 |
+
attn_mask = torch.unsqueeze(x_mask, 2) * torch.unsqueeze(y_mask, -1)
|
480 |
+
attn = commons.generate_path(w_ceil, attn_mask)
|
481 |
+
|
482 |
+
m_p = torch.matmul(attn.squeeze(1), m_p.transpose(1, 2)).transpose(1, 2) # [b, t', t], [b, t, d] -> [b, d, t']
|
483 |
+
logs_p = torch.matmul(attn.squeeze(1), logs_p.transpose(1, 2)).transpose(1, 2) # [b, t', t], [b, t, d] -> [b, d, t']
|
484 |
+
|
485 |
+
z_p = m_p + torch.randn_like(m_p) * torch.exp(logs_p) * noise_scale
|
486 |
+
z = self.flow(z_p, y_mask, g=g, reverse=True)
|
487 |
+
o = self.dec((z * y_mask)[:,:,:max_len], g=g)
|
488 |
+
return o, attn, y_mask, (z, z_p, m_p, logs_p)
|
489 |
+
|
490 |
+
def voice_conversion(self, y, y_lengths, sid_src, sid_tgt, tau=1.0):
|
491 |
+
g_src = sid_src
|
492 |
+
g_tgt = sid_tgt
|
493 |
+
z, m_q, logs_q, y_mask = self.enc_q(y, y_lengths, g=g_src, tau=tau)
|
494 |
+
z_p = self.flow(z, y_mask, g=g_src)
|
495 |
+
z_hat = self.flow(z_p, y_mask, g=g_tgt, reverse=True)
|
496 |
+
o_hat = self.dec(z_hat * y_mask, g=g_tgt)
|
497 |
+
return o_hat, y_mask, (z, z_p, z_hat)
|
modules.py
ADDED
@@ -0,0 +1,598 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import math
|
2 |
+
import torch
|
3 |
+
from torch import nn
|
4 |
+
from torch.nn import functional as F
|
5 |
+
|
6 |
+
from torch.nn import Conv1d
|
7 |
+
from torch.nn.utils import weight_norm, remove_weight_norm
|
8 |
+
|
9 |
+
import commons
|
10 |
+
from commons import init_weights, get_padding
|
11 |
+
from transforms import piecewise_rational_quadratic_transform
|
12 |
+
from attentions import Encoder
|
13 |
+
|
14 |
+
LRELU_SLOPE = 0.1
|
15 |
+
|
16 |
+
|
17 |
+
class LayerNorm(nn.Module):
|
18 |
+
def __init__(self, channels, eps=1e-5):
|
19 |
+
super().__init__()
|
20 |
+
self.channels = channels
|
21 |
+
self.eps = eps
|
22 |
+
|
23 |
+
self.gamma = nn.Parameter(torch.ones(channels))
|
24 |
+
self.beta = nn.Parameter(torch.zeros(channels))
|
25 |
+
|
26 |
+
def forward(self, x):
|
27 |
+
x = x.transpose(1, -1)
|
28 |
+
x = F.layer_norm(x, (self.channels,), self.gamma, self.beta, self.eps)
|
29 |
+
return x.transpose(1, -1)
|
30 |
+
|
31 |
+
|
32 |
+
class ConvReluNorm(nn.Module):
|
33 |
+
def __init__(
|
34 |
+
self,
|
35 |
+
in_channels,
|
36 |
+
hidden_channels,
|
37 |
+
out_channels,
|
38 |
+
kernel_size,
|
39 |
+
n_layers,
|
40 |
+
p_dropout,
|
41 |
+
):
|
42 |
+
super().__init__()
|
43 |
+
self.in_channels = in_channels
|
44 |
+
self.hidden_channels = hidden_channels
|
45 |
+
self.out_channels = out_channels
|
46 |
+
self.kernel_size = kernel_size
|
47 |
+
self.n_layers = n_layers
|
48 |
+
self.p_dropout = p_dropout
|
49 |
+
assert n_layers > 1, "Number of layers should be larger than 0."
|
50 |
+
|
51 |
+
self.conv_layers = nn.ModuleList()
|
52 |
+
self.norm_layers = nn.ModuleList()
|
53 |
+
self.conv_layers.append(
|
54 |
+
nn.Conv1d(
|
55 |
+
in_channels, hidden_channels, kernel_size, padding=kernel_size // 2
|
56 |
+
)
|
57 |
+
)
|
58 |
+
self.norm_layers.append(LayerNorm(hidden_channels))
|
59 |
+
self.relu_drop = nn.Sequential(nn.ReLU(), nn.Dropout(p_dropout))
|
60 |
+
for _ in range(n_layers - 1):
|
61 |
+
self.conv_layers.append(
|
62 |
+
nn.Conv1d(
|
63 |
+
hidden_channels,
|
64 |
+
hidden_channels,
|
65 |
+
kernel_size,
|
66 |
+
padding=kernel_size // 2,
|
67 |
+
)
|
68 |
+
)
|
69 |
+
self.norm_layers.append(LayerNorm(hidden_channels))
|
70 |
+
self.proj = nn.Conv1d(hidden_channels, out_channels, 1)
|
71 |
+
self.proj.weight.data.zero_()
|
72 |
+
self.proj.bias.data.zero_()
|
73 |
+
|
74 |
+
def forward(self, x, x_mask):
|
75 |
+
x_org = x
|
76 |
+
for i in range(self.n_layers):
|
77 |
+
x = self.conv_layers[i](x * x_mask)
|
78 |
+
x = self.norm_layers[i](x)
|
79 |
+
x = self.relu_drop(x)
|
80 |
+
x = x_org + self.proj(x)
|
81 |
+
return x * x_mask
|
82 |
+
|
83 |
+
|
84 |
+
class DDSConv(nn.Module):
|
85 |
+
"""
|
86 |
+
Dilated and Depth-Separable Convolution
|
87 |
+
"""
|
88 |
+
|
89 |
+
def __init__(self, channels, kernel_size, n_layers, p_dropout=0.0):
|
90 |
+
super().__init__()
|
91 |
+
self.channels = channels
|
92 |
+
self.kernel_size = kernel_size
|
93 |
+
self.n_layers = n_layers
|
94 |
+
self.p_dropout = p_dropout
|
95 |
+
|
96 |
+
self.drop = nn.Dropout(p_dropout)
|
97 |
+
self.convs_sep = nn.ModuleList()
|
98 |
+
self.convs_1x1 = nn.ModuleList()
|
99 |
+
self.norms_1 = nn.ModuleList()
|
100 |
+
self.norms_2 = nn.ModuleList()
|
101 |
+
for i in range(n_layers):
|
102 |
+
dilation = kernel_size**i
|
103 |
+
padding = (kernel_size * dilation - dilation) // 2
|
104 |
+
self.convs_sep.append(
|
105 |
+
nn.Conv1d(
|
106 |
+
channels,
|
107 |
+
channels,
|
108 |
+
kernel_size,
|
109 |
+
groups=channels,
|
110 |
+
dilation=dilation,
|
111 |
+
padding=padding,
|
112 |
+
)
|
113 |
+
)
|
114 |
+
self.convs_1x1.append(nn.Conv1d(channels, channels, 1))
|
115 |
+
self.norms_1.append(LayerNorm(channels))
|
116 |
+
self.norms_2.append(LayerNorm(channels))
|
117 |
+
|
118 |
+
def forward(self, x, x_mask, g=None):
|
119 |
+
if g is not None:
|
120 |
+
x = x + g
|
121 |
+
for i in range(self.n_layers):
|
122 |
+
y = self.convs_sep[i](x * x_mask)
|
123 |
+
y = self.norms_1[i](y)
|
124 |
+
y = F.gelu(y)
|
125 |
+
y = self.convs_1x1[i](y)
|
126 |
+
y = self.norms_2[i](y)
|
127 |
+
y = F.gelu(y)
|
128 |
+
y = self.drop(y)
|
129 |
+
x = x + y
|
130 |
+
return x * x_mask
|
131 |
+
|
132 |
+
|
133 |
+
class WN(torch.nn.Module):
|
134 |
+
def __init__(
|
135 |
+
self,
|
136 |
+
hidden_channels,
|
137 |
+
kernel_size,
|
138 |
+
dilation_rate,
|
139 |
+
n_layers,
|
140 |
+
gin_channels=0,
|
141 |
+
p_dropout=0,
|
142 |
+
):
|
143 |
+
super(WN, self).__init__()
|
144 |
+
assert kernel_size % 2 == 1
|
145 |
+
self.hidden_channels = hidden_channels
|
146 |
+
self.kernel_size = (kernel_size,)
|
147 |
+
self.dilation_rate = dilation_rate
|
148 |
+
self.n_layers = n_layers
|
149 |
+
self.gin_channels = gin_channels
|
150 |
+
self.p_dropout = p_dropout
|
151 |
+
|
152 |
+
self.in_layers = torch.nn.ModuleList()
|
153 |
+
self.res_skip_layers = torch.nn.ModuleList()
|
154 |
+
self.drop = nn.Dropout(p_dropout)
|
155 |
+
|
156 |
+
if gin_channels != 0:
|
157 |
+
cond_layer = torch.nn.Conv1d(
|
158 |
+
gin_channels, 2 * hidden_channels * n_layers, 1
|
159 |
+
)
|
160 |
+
self.cond_layer = torch.nn.utils.weight_norm(cond_layer, name="weight")
|
161 |
+
|
162 |
+
for i in range(n_layers):
|
163 |
+
dilation = dilation_rate**i
|
164 |
+
padding = int((kernel_size * dilation - dilation) / 2)
|
165 |
+
in_layer = torch.nn.Conv1d(
|
166 |
+
hidden_channels,
|
167 |
+
2 * hidden_channels,
|
168 |
+
kernel_size,
|
169 |
+
dilation=dilation,
|
170 |
+
padding=padding,
|
171 |
+
)
|
172 |
+
in_layer = torch.nn.utils.weight_norm(in_layer, name="weight")
|
173 |
+
self.in_layers.append(in_layer)
|
174 |
+
|
175 |
+
# last one is not necessary
|
176 |
+
if i < n_layers - 1:
|
177 |
+
res_skip_channels = 2 * hidden_channels
|
178 |
+
else:
|
179 |
+
res_skip_channels = hidden_channels
|
180 |
+
|
181 |
+
res_skip_layer = torch.nn.Conv1d(hidden_channels, res_skip_channels, 1)
|
182 |
+
res_skip_layer = torch.nn.utils.weight_norm(res_skip_layer, name="weight")
|
183 |
+
self.res_skip_layers.append(res_skip_layer)
|
184 |
+
|
185 |
+
def forward(self, x, x_mask, g=None, **kwargs):
|
186 |
+
output = torch.zeros_like(x)
|
187 |
+
n_channels_tensor = torch.IntTensor([self.hidden_channels])
|
188 |
+
|
189 |
+
if g is not None:
|
190 |
+
g = self.cond_layer(g)
|
191 |
+
|
192 |
+
for i in range(self.n_layers):
|
193 |
+
x_in = self.in_layers[i](x)
|
194 |
+
if g is not None:
|
195 |
+
cond_offset = i * 2 * self.hidden_channels
|
196 |
+
g_l = g[:, cond_offset : cond_offset + 2 * self.hidden_channels, :]
|
197 |
+
else:
|
198 |
+
g_l = torch.zeros_like(x_in)
|
199 |
+
|
200 |
+
acts = commons.fused_add_tanh_sigmoid_multiply(x_in, g_l, n_channels_tensor)
|
201 |
+
acts = self.drop(acts)
|
202 |
+
|
203 |
+
res_skip_acts = self.res_skip_layers[i](acts)
|
204 |
+
if i < self.n_layers - 1:
|
205 |
+
res_acts = res_skip_acts[:, : self.hidden_channels, :]
|
206 |
+
x = (x + res_acts) * x_mask
|
207 |
+
output = output + res_skip_acts[:, self.hidden_channels :, :]
|
208 |
+
else:
|
209 |
+
output = output + res_skip_acts
|
210 |
+
return output * x_mask
|
211 |
+
|
212 |
+
def remove_weight_norm(self):
|
213 |
+
if self.gin_channels != 0:
|
214 |
+
torch.nn.utils.remove_weight_norm(self.cond_layer)
|
215 |
+
for l in self.in_layers:
|
216 |
+
torch.nn.utils.remove_weight_norm(l)
|
217 |
+
for l in self.res_skip_layers:
|
218 |
+
torch.nn.utils.remove_weight_norm(l)
|
219 |
+
|
220 |
+
|
221 |
+
class ResBlock1(torch.nn.Module):
|
222 |
+
def __init__(self, channels, kernel_size=3, dilation=(1, 3, 5)):
|
223 |
+
super(ResBlock1, self).__init__()
|
224 |
+
self.convs1 = nn.ModuleList(
|
225 |
+
[
|
226 |
+
weight_norm(
|
227 |
+
Conv1d(
|
228 |
+
channels,
|
229 |
+
channels,
|
230 |
+
kernel_size,
|
231 |
+
1,
|
232 |
+
dilation=dilation[0],
|
233 |
+
padding=get_padding(kernel_size, dilation[0]),
|
234 |
+
)
|
235 |
+
),
|
236 |
+
weight_norm(
|
237 |
+
Conv1d(
|
238 |
+
channels,
|
239 |
+
channels,
|
240 |
+
kernel_size,
|
241 |
+
1,
|
242 |
+
dilation=dilation[1],
|
243 |
+
padding=get_padding(kernel_size, dilation[1]),
|
244 |
+
)
|
245 |
+
),
|
246 |
+
weight_norm(
|
247 |
+
Conv1d(
|
248 |
+
channels,
|
249 |
+
channels,
|
250 |
+
kernel_size,
|
251 |
+
1,
|
252 |
+
dilation=dilation[2],
|
253 |
+
padding=get_padding(kernel_size, dilation[2]),
|
254 |
+
)
|
255 |
+
),
|
256 |
+
]
|
257 |
+
)
|
258 |
+
self.convs1.apply(init_weights)
|
259 |
+
|
260 |
+
self.convs2 = nn.ModuleList(
|
261 |
+
[
|
262 |
+
weight_norm(
|
263 |
+
Conv1d(
|
264 |
+
channels,
|
265 |
+
channels,
|
266 |
+
kernel_size,
|
267 |
+
1,
|
268 |
+
dilation=1,
|
269 |
+
padding=get_padding(kernel_size, 1),
|
270 |
+
)
|
271 |
+
),
|
272 |
+
weight_norm(
|
273 |
+
Conv1d(
|
274 |
+
channels,
|
275 |
+
channels,
|
276 |
+
kernel_size,
|
277 |
+
1,
|
278 |
+
dilation=1,
|
279 |
+
padding=get_padding(kernel_size, 1),
|
280 |
+
)
|
281 |
+
),
|
282 |
+
weight_norm(
|
283 |
+
Conv1d(
|
284 |
+
channels,
|
285 |
+
channels,
|
286 |
+
kernel_size,
|
287 |
+
1,
|
288 |
+
dilation=1,
|
289 |
+
padding=get_padding(kernel_size, 1),
|
290 |
+
)
|
291 |
+
),
|
292 |
+
]
|
293 |
+
)
|
294 |
+
self.convs2.apply(init_weights)
|
295 |
+
|
296 |
+
def forward(self, x, x_mask=None):
|
297 |
+
for c1, c2 in zip(self.convs1, self.convs2):
|
298 |
+
xt = F.leaky_relu(x, LRELU_SLOPE)
|
299 |
+
if x_mask is not None:
|
300 |
+
xt = xt * x_mask
|
301 |
+
xt = c1(xt)
|
302 |
+
xt = F.leaky_relu(xt, LRELU_SLOPE)
|
303 |
+
if x_mask is not None:
|
304 |
+
xt = xt * x_mask
|
305 |
+
xt = c2(xt)
|
306 |
+
x = xt + x
|
307 |
+
if x_mask is not None:
|
308 |
+
x = x * x_mask
|
309 |
+
return x
|
310 |
+
|
311 |
+
def remove_weight_norm(self):
|
312 |
+
for l in self.convs1:
|
313 |
+
remove_weight_norm(l)
|
314 |
+
for l in self.convs2:
|
315 |
+
remove_weight_norm(l)
|
316 |
+
|
317 |
+
|
318 |
+
class ResBlock2(torch.nn.Module):
|
319 |
+
def __init__(self, channels, kernel_size=3, dilation=(1, 3)):
|
320 |
+
super(ResBlock2, self).__init__()
|
321 |
+
self.convs = nn.ModuleList(
|
322 |
+
[
|
323 |
+
weight_norm(
|
324 |
+
Conv1d(
|
325 |
+
channels,
|
326 |
+
channels,
|
327 |
+
kernel_size,
|
328 |
+
1,
|
329 |
+
dilation=dilation[0],
|
330 |
+
padding=get_padding(kernel_size, dilation[0]),
|
331 |
+
)
|
332 |
+
),
|
333 |
+
weight_norm(
|
334 |
+
Conv1d(
|
335 |
+
channels,
|
336 |
+
channels,
|
337 |
+
kernel_size,
|
338 |
+
1,
|
339 |
+
dilation=dilation[1],
|
340 |
+
padding=get_padding(kernel_size, dilation[1]),
|
341 |
+
)
|
342 |
+
),
|
343 |
+
]
|
344 |
+
)
|
345 |
+
self.convs.apply(init_weights)
|
346 |
+
|
347 |
+
def forward(self, x, x_mask=None):
|
348 |
+
for c in self.convs:
|
349 |
+
xt = F.leaky_relu(x, LRELU_SLOPE)
|
350 |
+
if x_mask is not None:
|
351 |
+
xt = xt * x_mask
|
352 |
+
xt = c(xt)
|
353 |
+
x = xt + x
|
354 |
+
if x_mask is not None:
|
355 |
+
x = x * x_mask
|
356 |
+
return x
|
357 |
+
|
358 |
+
def remove_weight_norm(self):
|
359 |
+
for l in self.convs:
|
360 |
+
remove_weight_norm(l)
|
361 |
+
|
362 |
+
|
363 |
+
class Log(nn.Module):
|
364 |
+
def forward(self, x, x_mask, reverse=False, **kwargs):
|
365 |
+
if not reverse:
|
366 |
+
y = torch.log(torch.clamp_min(x, 1e-5)) * x_mask
|
367 |
+
logdet = torch.sum(-y, [1, 2])
|
368 |
+
return y, logdet
|
369 |
+
else:
|
370 |
+
x = torch.exp(x) * x_mask
|
371 |
+
return x
|
372 |
+
|
373 |
+
|
374 |
+
class Flip(nn.Module):
|
375 |
+
def forward(self, x, *args, reverse=False, **kwargs):
|
376 |
+
x = torch.flip(x, [1])
|
377 |
+
if not reverse:
|
378 |
+
logdet = torch.zeros(x.size(0)).to(dtype=x.dtype, device=x.device)
|
379 |
+
return x, logdet
|
380 |
+
else:
|
381 |
+
return x
|
382 |
+
|
383 |
+
|
384 |
+
class ElementwiseAffine(nn.Module):
|
385 |
+
def __init__(self, channels):
|
386 |
+
super().__init__()
|
387 |
+
self.channels = channels
|
388 |
+
self.m = nn.Parameter(torch.zeros(channels, 1))
|
389 |
+
self.logs = nn.Parameter(torch.zeros(channels, 1))
|
390 |
+
|
391 |
+
def forward(self, x, x_mask, reverse=False, **kwargs):
|
392 |
+
if not reverse:
|
393 |
+
y = self.m + torch.exp(self.logs) * x
|
394 |
+
y = y * x_mask
|
395 |
+
logdet = torch.sum(self.logs * x_mask, [1, 2])
|
396 |
+
return y, logdet
|
397 |
+
else:
|
398 |
+
x = (x - self.m) * torch.exp(-self.logs) * x_mask
|
399 |
+
return x
|
400 |
+
|
401 |
+
|
402 |
+
class ResidualCouplingLayer(nn.Module):
|
403 |
+
def __init__(
|
404 |
+
self,
|
405 |
+
channels,
|
406 |
+
hidden_channels,
|
407 |
+
kernel_size,
|
408 |
+
dilation_rate,
|
409 |
+
n_layers,
|
410 |
+
p_dropout=0,
|
411 |
+
gin_channels=0,
|
412 |
+
mean_only=False,
|
413 |
+
):
|
414 |
+
assert channels % 2 == 0, "channels should be divisible by 2"
|
415 |
+
super().__init__()
|
416 |
+
self.channels = channels
|
417 |
+
self.hidden_channels = hidden_channels
|
418 |
+
self.kernel_size = kernel_size
|
419 |
+
self.dilation_rate = dilation_rate
|
420 |
+
self.n_layers = n_layers
|
421 |
+
self.half_channels = channels // 2
|
422 |
+
self.mean_only = mean_only
|
423 |
+
|
424 |
+
self.pre = nn.Conv1d(self.half_channels, hidden_channels, 1)
|
425 |
+
self.enc = WN(
|
426 |
+
hidden_channels,
|
427 |
+
kernel_size,
|
428 |
+
dilation_rate,
|
429 |
+
n_layers,
|
430 |
+
p_dropout=p_dropout,
|
431 |
+
gin_channels=gin_channels,
|
432 |
+
)
|
433 |
+
self.post = nn.Conv1d(hidden_channels, self.half_channels * (2 - mean_only), 1)
|
434 |
+
self.post.weight.data.zero_()
|
435 |
+
self.post.bias.data.zero_()
|
436 |
+
|
437 |
+
def forward(self, x, x_mask, g=None, reverse=False):
|
438 |
+
x0, x1 = torch.split(x, [self.half_channels] * 2, 1)
|
439 |
+
h = self.pre(x0) * x_mask
|
440 |
+
h = self.enc(h, x_mask, g=g)
|
441 |
+
stats = self.post(h) * x_mask
|
442 |
+
if not self.mean_only:
|
443 |
+
m, logs = torch.split(stats, [self.half_channels] * 2, 1)
|
444 |
+
else:
|
445 |
+
m = stats
|
446 |
+
logs = torch.zeros_like(m)
|
447 |
+
|
448 |
+
if not reverse:
|
449 |
+
x1 = m + x1 * torch.exp(logs) * x_mask
|
450 |
+
x = torch.cat([x0, x1], 1)
|
451 |
+
logdet = torch.sum(logs, [1, 2])
|
452 |
+
return x, logdet
|
453 |
+
else:
|
454 |
+
x1 = (x1 - m) * torch.exp(-logs) * x_mask
|
455 |
+
x = torch.cat([x0, x1], 1)
|
456 |
+
return x
|
457 |
+
|
458 |
+
|
459 |
+
class ConvFlow(nn.Module):
|
460 |
+
def __init__(
|
461 |
+
self,
|
462 |
+
in_channels,
|
463 |
+
filter_channels,
|
464 |
+
kernel_size,
|
465 |
+
n_layers,
|
466 |
+
num_bins=10,
|
467 |
+
tail_bound=5.0,
|
468 |
+
):
|
469 |
+
super().__init__()
|
470 |
+
self.in_channels = in_channels
|
471 |
+
self.filter_channels = filter_channels
|
472 |
+
self.kernel_size = kernel_size
|
473 |
+
self.n_layers = n_layers
|
474 |
+
self.num_bins = num_bins
|
475 |
+
self.tail_bound = tail_bound
|
476 |
+
self.half_channels = in_channels // 2
|
477 |
+
|
478 |
+
self.pre = nn.Conv1d(self.half_channels, filter_channels, 1)
|
479 |
+
self.convs = DDSConv(filter_channels, kernel_size, n_layers, p_dropout=0.0)
|
480 |
+
self.proj = nn.Conv1d(
|
481 |
+
filter_channels, self.half_channels * (num_bins * 3 - 1), 1
|
482 |
+
)
|
483 |
+
self.proj.weight.data.zero_()
|
484 |
+
self.proj.bias.data.zero_()
|
485 |
+
|
486 |
+
def forward(self, x, x_mask, g=None, reverse=False):
|
487 |
+
x0, x1 = torch.split(x, [self.half_channels] * 2, 1)
|
488 |
+
h = self.pre(x0)
|
489 |
+
h = self.convs(h, x_mask, g=g)
|
490 |
+
h = self.proj(h) * x_mask
|
491 |
+
|
492 |
+
b, c, t = x0.shape
|
493 |
+
h = h.reshape(b, c, -1, t).permute(0, 1, 3, 2) # [b, cx?, t] -> [b, c, t, ?]
|
494 |
+
|
495 |
+
unnormalized_widths = h[..., : self.num_bins] / math.sqrt(self.filter_channels)
|
496 |
+
unnormalized_heights = h[..., self.num_bins : 2 * self.num_bins] / math.sqrt(
|
497 |
+
self.filter_channels
|
498 |
+
)
|
499 |
+
unnormalized_derivatives = h[..., 2 * self.num_bins :]
|
500 |
+
|
501 |
+
x1, logabsdet = piecewise_rational_quadratic_transform(
|
502 |
+
x1,
|
503 |
+
unnormalized_widths,
|
504 |
+
unnormalized_heights,
|
505 |
+
unnormalized_derivatives,
|
506 |
+
inverse=reverse,
|
507 |
+
tails="linear",
|
508 |
+
tail_bound=self.tail_bound,
|
509 |
+
)
|
510 |
+
|
511 |
+
x = torch.cat([x0, x1], 1) * x_mask
|
512 |
+
logdet = torch.sum(logabsdet * x_mask, [1, 2])
|
513 |
+
if not reverse:
|
514 |
+
return x, logdet
|
515 |
+
else:
|
516 |
+
return x
|
517 |
+
|
518 |
+
|
519 |
+
class TransformerCouplingLayer(nn.Module):
|
520 |
+
def __init__(
|
521 |
+
self,
|
522 |
+
channels,
|
523 |
+
hidden_channels,
|
524 |
+
kernel_size,
|
525 |
+
n_layers,
|
526 |
+
n_heads,
|
527 |
+
p_dropout=0,
|
528 |
+
filter_channels=0,
|
529 |
+
mean_only=False,
|
530 |
+
wn_sharing_parameter=None,
|
531 |
+
gin_channels=0,
|
532 |
+
):
|
533 |
+
assert n_layers == 3, n_layers
|
534 |
+
assert channels % 2 == 0, "channels should be divisible by 2"
|
535 |
+
super().__init__()
|
536 |
+
self.channels = channels
|
537 |
+
self.hidden_channels = hidden_channels
|
538 |
+
self.kernel_size = kernel_size
|
539 |
+
self.n_layers = n_layers
|
540 |
+
self.half_channels = channels // 2
|
541 |
+
self.mean_only = mean_only
|
542 |
+
|
543 |
+
self.pre = nn.Conv1d(self.half_channels, hidden_channels, 1)
|
544 |
+
self.enc = (
|
545 |
+
Encoder(
|
546 |
+
hidden_channels,
|
547 |
+
filter_channels,
|
548 |
+
n_heads,
|
549 |
+
n_layers,
|
550 |
+
kernel_size,
|
551 |
+
p_dropout,
|
552 |
+
isflow=True,
|
553 |
+
gin_channels=gin_channels,
|
554 |
+
)
|
555 |
+
if wn_sharing_parameter is None
|
556 |
+
else wn_sharing_parameter
|
557 |
+
)
|
558 |
+
self.post = nn.Conv1d(hidden_channels, self.half_channels * (2 - mean_only), 1)
|
559 |
+
self.post.weight.data.zero_()
|
560 |
+
self.post.bias.data.zero_()
|
561 |
+
|
562 |
+
def forward(self, x, x_mask, g=None, reverse=False):
|
563 |
+
x0, x1 = torch.split(x, [self.half_channels] * 2, 1)
|
564 |
+
h = self.pre(x0) * x_mask
|
565 |
+
h = self.enc(h, x_mask, g=g)
|
566 |
+
stats = self.post(h) * x_mask
|
567 |
+
if not self.mean_only:
|
568 |
+
m, logs = torch.split(stats, [self.half_channels] * 2, 1)
|
569 |
+
else:
|
570 |
+
m = stats
|
571 |
+
logs = torch.zeros_like(m)
|
572 |
+
|
573 |
+
if not reverse:
|
574 |
+
x1 = m + x1 * torch.exp(logs) * x_mask
|
575 |
+
x = torch.cat([x0, x1], 1)
|
576 |
+
logdet = torch.sum(logs, [1, 2])
|
577 |
+
return x, logdet
|
578 |
+
else:
|
579 |
+
x1 = (x1 - m) * torch.exp(-logs) * x_mask
|
580 |
+
x = torch.cat([x0, x1], 1)
|
581 |
+
return x
|
582 |
+
|
583 |
+
x1, logabsdet = piecewise_rational_quadratic_transform(
|
584 |
+
x1,
|
585 |
+
unnormalized_widths,
|
586 |
+
unnormalized_heights,
|
587 |
+
unnormalized_derivatives,
|
588 |
+
inverse=reverse,
|
589 |
+
tails="linear",
|
590 |
+
tail_bound=self.tail_bound,
|
591 |
+
)
|
592 |
+
|
593 |
+
x = torch.cat([x0, x1], 1) * x_mask
|
594 |
+
logdet = torch.sum(logabsdet * x_mask, [1, 2])
|
595 |
+
if not reverse:
|
596 |
+
return x, logdet
|
597 |
+
else:
|
598 |
+
return x
|
se_extractor.py
ADDED
@@ -0,0 +1,139 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import os
|
2 |
+
import glob
|
3 |
+
import torch
|
4 |
+
from glob import glob
|
5 |
+
import numpy as np
|
6 |
+
from pydub import AudioSegment
|
7 |
+
from faster_whisper import WhisperModel
|
8 |
+
from whisper_timestamped.transcribe import get_audio_tensor, get_vad_segments
|
9 |
+
|
10 |
+
model_size = "medium"
|
11 |
+
# Run on GPU with FP16
|
12 |
+
model = None
|
13 |
+
def split_audio_whisper(audio_path, target_dir='processed'):
|
14 |
+
global model
|
15 |
+
if model is None:
|
16 |
+
model = WhisperModel(model_size, device="cuda", compute_type="float16")
|
17 |
+
audio = AudioSegment.from_file(audio_path)
|
18 |
+
max_len = len(audio)
|
19 |
+
|
20 |
+
audio_name = os.path.basename(audio_path).rsplit('.', 1)[0]
|
21 |
+
target_folder = os.path.join(target_dir, audio_name)
|
22 |
+
|
23 |
+
segments, info = model.transcribe(audio_path, beam_size=5, word_timestamps=True)
|
24 |
+
segments = list(segments)
|
25 |
+
|
26 |
+
# create directory
|
27 |
+
os.makedirs(target_folder, exist_ok=True)
|
28 |
+
wavs_folder = os.path.join(target_folder, 'wavs')
|
29 |
+
os.makedirs(wavs_folder, exist_ok=True)
|
30 |
+
|
31 |
+
# segments
|
32 |
+
s_ind = 0
|
33 |
+
start_time = None
|
34 |
+
|
35 |
+
for k, w in enumerate(segments):
|
36 |
+
# process with the time
|
37 |
+
if k == 0:
|
38 |
+
start_time = max(0, w.start)
|
39 |
+
|
40 |
+
end_time = w.end
|
41 |
+
|
42 |
+
# calculate confidence
|
43 |
+
if len(w.words) > 0:
|
44 |
+
confidence = sum([s.probability for s in w.words]) / len(w.words)
|
45 |
+
else:
|
46 |
+
confidence = 0.
|
47 |
+
# clean text
|
48 |
+
text = w.text.replace('...', '')
|
49 |
+
|
50 |
+
# left 0.08s for each audios
|
51 |
+
audio_seg = audio[int( start_time * 1000) : min(max_len, int(end_time * 1000) + 80)]
|
52 |
+
|
53 |
+
# segment file name
|
54 |
+
fname = f"{audio_name}_seg{s_ind}.wav"
|
55 |
+
|
56 |
+
# filter out the segment shorter than 1.5s and longer than 20s
|
57 |
+
save = audio_seg.duration_seconds > 1.5 and \
|
58 |
+
audio_seg.duration_seconds < 20. and \
|
59 |
+
len(text) >= 2 and len(text) < 200
|
60 |
+
|
61 |
+
if save:
|
62 |
+
output_file = os.path.join(wavs_folder, fname)
|
63 |
+
audio_seg.export(output_file, format='wav')
|
64 |
+
|
65 |
+
if k < len(segments) - 1:
|
66 |
+
start_time = max(0, segments[k+1].start - 0.08)
|
67 |
+
|
68 |
+
s_ind = s_ind + 1
|
69 |
+
return wavs_folder
|
70 |
+
|
71 |
+
|
72 |
+
def split_audio_vad(audio_path, target_dir, split_seconds=10.0):
|
73 |
+
SAMPLE_RATE = 16000
|
74 |
+
audio_vad = get_audio_tensor(audio_path)
|
75 |
+
segments = get_vad_segments(
|
76 |
+
audio_vad,
|
77 |
+
output_sample=True,
|
78 |
+
min_speech_duration=0.1,
|
79 |
+
min_silence_duration=1,
|
80 |
+
method="silero",
|
81 |
+
)
|
82 |
+
segments = [(seg["start"], seg["end"]) for seg in segments]
|
83 |
+
segments = [(float(s) / SAMPLE_RATE, float(e) / SAMPLE_RATE) for s,e in segments]
|
84 |
+
print(segments)
|
85 |
+
audio_active = AudioSegment.silent(duration=0)
|
86 |
+
audio = AudioSegment.from_file(audio_path)
|
87 |
+
|
88 |
+
for start_time, end_time in segments:
|
89 |
+
audio_active += audio[int( start_time * 1000) : int(end_time * 1000)]
|
90 |
+
|
91 |
+
audio_dur = audio_active.duration_seconds
|
92 |
+
print(f'after vad: dur = {audio_dur}')
|
93 |
+
audio_name = os.path.basename(audio_path).rsplit('.', 1)[0]
|
94 |
+
target_folder = os.path.join(target_dir, audio_name)
|
95 |
+
wavs_folder = os.path.join(target_folder, 'wavs')
|
96 |
+
os.makedirs(wavs_folder, exist_ok=True)
|
97 |
+
start_time = 0.
|
98 |
+
count = 0
|
99 |
+
num_splits = int(np.round(audio_dur / split_seconds))
|
100 |
+
assert num_splits > 0, 'input audio is too short'
|
101 |
+
interval = audio_dur / num_splits
|
102 |
+
|
103 |
+
for i in range(num_splits):
|
104 |
+
end_time = min(start_time + interval, audio_dur)
|
105 |
+
if i == num_splits - 1:
|
106 |
+
end_time = audio_dur
|
107 |
+
output_file = f"{wavs_folder}/{audio_name}_seg{count}.wav"
|
108 |
+
audio_seg = audio_active[int(start_time * 1000): int(end_time * 1000)]
|
109 |
+
audio_seg.export(output_file, format='wav')
|
110 |
+
start_time = end_time
|
111 |
+
count += 1
|
112 |
+
return wavs_folder
|
113 |
+
|
114 |
+
|
115 |
+
|
116 |
+
|
117 |
+
|
118 |
+
def get_se(audio_path, vc_model, target_dir='processed', vad=True):
|
119 |
+
device = vc_model.device
|
120 |
+
|
121 |
+
audio_name = os.path.basename(audio_path).rsplit('.', 1)[0]
|
122 |
+
se_path = os.path.join(target_dir, audio_name, 'se.pth')
|
123 |
+
|
124 |
+
if os.path.isfile(se_path):
|
125 |
+
se = torch.load(se_path).to(device)
|
126 |
+
return se, audio_name
|
127 |
+
if os.path.isdir(audio_path):
|
128 |
+
wavs_folder = audio_path
|
129 |
+
elif vad:
|
130 |
+
wavs_folder = split_audio_vad(audio_path, target_dir)
|
131 |
+
else:
|
132 |
+
wavs_folder = split_audio_whisper(audio_path, target_dir)
|
133 |
+
|
134 |
+
audio_segs = glob(f'{wavs_folder}/*.wav')
|
135 |
+
if len(audio_segs) == 0:
|
136 |
+
raise NotImplementedError('No audio segments found!')
|
137 |
+
|
138 |
+
return vc_model.extract_se(audio_segs, se_save_path=se_path), audio_name
|
139 |
+
|
transforms.py
ADDED
@@ -0,0 +1,209 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import torch
|
2 |
+
from torch.nn import functional as F
|
3 |
+
|
4 |
+
import numpy as np
|
5 |
+
|
6 |
+
|
7 |
+
DEFAULT_MIN_BIN_WIDTH = 1e-3
|
8 |
+
DEFAULT_MIN_BIN_HEIGHT = 1e-3
|
9 |
+
DEFAULT_MIN_DERIVATIVE = 1e-3
|
10 |
+
|
11 |
+
|
12 |
+
def piecewise_rational_quadratic_transform(
|
13 |
+
inputs,
|
14 |
+
unnormalized_widths,
|
15 |
+
unnormalized_heights,
|
16 |
+
unnormalized_derivatives,
|
17 |
+
inverse=False,
|
18 |
+
tails=None,
|
19 |
+
tail_bound=1.0,
|
20 |
+
min_bin_width=DEFAULT_MIN_BIN_WIDTH,
|
21 |
+
min_bin_height=DEFAULT_MIN_BIN_HEIGHT,
|
22 |
+
min_derivative=DEFAULT_MIN_DERIVATIVE,
|
23 |
+
):
|
24 |
+
if tails is None:
|
25 |
+
spline_fn = rational_quadratic_spline
|
26 |
+
spline_kwargs = {}
|
27 |
+
else:
|
28 |
+
spline_fn = unconstrained_rational_quadratic_spline
|
29 |
+
spline_kwargs = {"tails": tails, "tail_bound": tail_bound}
|
30 |
+
|
31 |
+
outputs, logabsdet = spline_fn(
|
32 |
+
inputs=inputs,
|
33 |
+
unnormalized_widths=unnormalized_widths,
|
34 |
+
unnormalized_heights=unnormalized_heights,
|
35 |
+
unnormalized_derivatives=unnormalized_derivatives,
|
36 |
+
inverse=inverse,
|
37 |
+
min_bin_width=min_bin_width,
|
38 |
+
min_bin_height=min_bin_height,
|
39 |
+
min_derivative=min_derivative,
|
40 |
+
**spline_kwargs
|
41 |
+
)
|
42 |
+
return outputs, logabsdet
|
43 |
+
|
44 |
+
|
45 |
+
def searchsorted(bin_locations, inputs, eps=1e-6):
|
46 |
+
bin_locations[..., -1] += eps
|
47 |
+
return torch.sum(inputs[..., None] >= bin_locations, dim=-1) - 1
|
48 |
+
|
49 |
+
|
50 |
+
def unconstrained_rational_quadratic_spline(
|
51 |
+
inputs,
|
52 |
+
unnormalized_widths,
|
53 |
+
unnormalized_heights,
|
54 |
+
unnormalized_derivatives,
|
55 |
+
inverse=False,
|
56 |
+
tails="linear",
|
57 |
+
tail_bound=1.0,
|
58 |
+
min_bin_width=DEFAULT_MIN_BIN_WIDTH,
|
59 |
+
min_bin_height=DEFAULT_MIN_BIN_HEIGHT,
|
60 |
+
min_derivative=DEFAULT_MIN_DERIVATIVE,
|
61 |
+
):
|
62 |
+
inside_interval_mask = (inputs >= -tail_bound) & (inputs <= tail_bound)
|
63 |
+
outside_interval_mask = ~inside_interval_mask
|
64 |
+
|
65 |
+
outputs = torch.zeros_like(inputs)
|
66 |
+
logabsdet = torch.zeros_like(inputs)
|
67 |
+
|
68 |
+
if tails == "linear":
|
69 |
+
unnormalized_derivatives = F.pad(unnormalized_derivatives, pad=(1, 1))
|
70 |
+
constant = np.log(np.exp(1 - min_derivative) - 1)
|
71 |
+
unnormalized_derivatives[..., 0] = constant
|
72 |
+
unnormalized_derivatives[..., -1] = constant
|
73 |
+
|
74 |
+
outputs[outside_interval_mask] = inputs[outside_interval_mask]
|
75 |
+
logabsdet[outside_interval_mask] = 0
|
76 |
+
else:
|
77 |
+
raise RuntimeError("{} tails are not implemented.".format(tails))
|
78 |
+
|
79 |
+
(
|
80 |
+
outputs[inside_interval_mask],
|
81 |
+
logabsdet[inside_interval_mask],
|
82 |
+
) = rational_quadratic_spline(
|
83 |
+
inputs=inputs[inside_interval_mask],
|
84 |
+
unnormalized_widths=unnormalized_widths[inside_interval_mask, :],
|
85 |
+
unnormalized_heights=unnormalized_heights[inside_interval_mask, :],
|
86 |
+
unnormalized_derivatives=unnormalized_derivatives[inside_interval_mask, :],
|
87 |
+
inverse=inverse,
|
88 |
+
left=-tail_bound,
|
89 |
+
right=tail_bound,
|
90 |
+
bottom=-tail_bound,
|
91 |
+
top=tail_bound,
|
92 |
+
min_bin_width=min_bin_width,
|
93 |
+
min_bin_height=min_bin_height,
|
94 |
+
min_derivative=min_derivative,
|
95 |
+
)
|
96 |
+
|
97 |
+
return outputs, logabsdet
|
98 |
+
|
99 |
+
|
100 |
+
def rational_quadratic_spline(
|
101 |
+
inputs,
|
102 |
+
unnormalized_widths,
|
103 |
+
unnormalized_heights,
|
104 |
+
unnormalized_derivatives,
|
105 |
+
inverse=False,
|
106 |
+
left=0.0,
|
107 |
+
right=1.0,
|
108 |
+
bottom=0.0,
|
109 |
+
top=1.0,
|
110 |
+
min_bin_width=DEFAULT_MIN_BIN_WIDTH,
|
111 |
+
min_bin_height=DEFAULT_MIN_BIN_HEIGHT,
|
112 |
+
min_derivative=DEFAULT_MIN_DERIVATIVE,
|
113 |
+
):
|
114 |
+
if torch.min(inputs) < left or torch.max(inputs) > right:
|
115 |
+
raise ValueError("Input to a transform is not within its domain")
|
116 |
+
|
117 |
+
num_bins = unnormalized_widths.shape[-1]
|
118 |
+
|
119 |
+
if min_bin_width * num_bins > 1.0:
|
120 |
+
raise ValueError("Minimal bin width too large for the number of bins")
|
121 |
+
if min_bin_height * num_bins > 1.0:
|
122 |
+
raise ValueError("Minimal bin height too large for the number of bins")
|
123 |
+
|
124 |
+
widths = F.softmax(unnormalized_widths, dim=-1)
|
125 |
+
widths = min_bin_width + (1 - min_bin_width * num_bins) * widths
|
126 |
+
cumwidths = torch.cumsum(widths, dim=-1)
|
127 |
+
cumwidths = F.pad(cumwidths, pad=(1, 0), mode="constant", value=0.0)
|
128 |
+
cumwidths = (right - left) * cumwidths + left
|
129 |
+
cumwidths[..., 0] = left
|
130 |
+
cumwidths[..., -1] = right
|
131 |
+
widths = cumwidths[..., 1:] - cumwidths[..., :-1]
|
132 |
+
|
133 |
+
derivatives = min_derivative + F.softplus(unnormalized_derivatives)
|
134 |
+
|
135 |
+
heights = F.softmax(unnormalized_heights, dim=-1)
|
136 |
+
heights = min_bin_height + (1 - min_bin_height * num_bins) * heights
|
137 |
+
cumheights = torch.cumsum(heights, dim=-1)
|
138 |
+
cumheights = F.pad(cumheights, pad=(1, 0), mode="constant", value=0.0)
|
139 |
+
cumheights = (top - bottom) * cumheights + bottom
|
140 |
+
cumheights[..., 0] = bottom
|
141 |
+
cumheights[..., -1] = top
|
142 |
+
heights = cumheights[..., 1:] - cumheights[..., :-1]
|
143 |
+
|
144 |
+
if inverse:
|
145 |
+
bin_idx = searchsorted(cumheights, inputs)[..., None]
|
146 |
+
else:
|
147 |
+
bin_idx = searchsorted(cumwidths, inputs)[..., None]
|
148 |
+
|
149 |
+
input_cumwidths = cumwidths.gather(-1, bin_idx)[..., 0]
|
150 |
+
input_bin_widths = widths.gather(-1, bin_idx)[..., 0]
|
151 |
+
|
152 |
+
input_cumheights = cumheights.gather(-1, bin_idx)[..., 0]
|
153 |
+
delta = heights / widths
|
154 |
+
input_delta = delta.gather(-1, bin_idx)[..., 0]
|
155 |
+
|
156 |
+
input_derivatives = derivatives.gather(-1, bin_idx)[..., 0]
|
157 |
+
input_derivatives_plus_one = derivatives[..., 1:].gather(-1, bin_idx)[..., 0]
|
158 |
+
|
159 |
+
input_heights = heights.gather(-1, bin_idx)[..., 0]
|
160 |
+
|
161 |
+
if inverse:
|
162 |
+
a = (inputs - input_cumheights) * (
|
163 |
+
input_derivatives + input_derivatives_plus_one - 2 * input_delta
|
164 |
+
) + input_heights * (input_delta - input_derivatives)
|
165 |
+
b = input_heights * input_derivatives - (inputs - input_cumheights) * (
|
166 |
+
input_derivatives + input_derivatives_plus_one - 2 * input_delta
|
167 |
+
)
|
168 |
+
c = -input_delta * (inputs - input_cumheights)
|
169 |
+
|
170 |
+
discriminant = b.pow(2) - 4 * a * c
|
171 |
+
assert (discriminant >= 0).all()
|
172 |
+
|
173 |
+
root = (2 * c) / (-b - torch.sqrt(discriminant))
|
174 |
+
outputs = root * input_bin_widths + input_cumwidths
|
175 |
+
|
176 |
+
theta_one_minus_theta = root * (1 - root)
|
177 |
+
denominator = input_delta + (
|
178 |
+
(input_derivatives + input_derivatives_plus_one - 2 * input_delta)
|
179 |
+
* theta_one_minus_theta
|
180 |
+
)
|
181 |
+
derivative_numerator = input_delta.pow(2) * (
|
182 |
+
input_derivatives_plus_one * root.pow(2)
|
183 |
+
+ 2 * input_delta * theta_one_minus_theta
|
184 |
+
+ input_derivatives * (1 - root).pow(2)
|
185 |
+
)
|
186 |
+
logabsdet = torch.log(derivative_numerator) - 2 * torch.log(denominator)
|
187 |
+
|
188 |
+
return outputs, -logabsdet
|
189 |
+
else:
|
190 |
+
theta = (inputs - input_cumwidths) / input_bin_widths
|
191 |
+
theta_one_minus_theta = theta * (1 - theta)
|
192 |
+
|
193 |
+
numerator = input_heights * (
|
194 |
+
input_delta * theta.pow(2) + input_derivatives * theta_one_minus_theta
|
195 |
+
)
|
196 |
+
denominator = input_delta + (
|
197 |
+
(input_derivatives + input_derivatives_plus_one - 2 * input_delta)
|
198 |
+
* theta_one_minus_theta
|
199 |
+
)
|
200 |
+
outputs = input_cumheights + numerator / denominator
|
201 |
+
|
202 |
+
derivative_numerator = input_delta.pow(2) * (
|
203 |
+
input_derivatives_plus_one * theta.pow(2)
|
204 |
+
+ 2 * input_delta * theta_one_minus_theta
|
205 |
+
+ input_derivatives * (1 - theta).pow(2)
|
206 |
+
)
|
207 |
+
logabsdet = torch.log(derivative_numerator) - 2 * torch.log(denominator)
|
208 |
+
|
209 |
+
return outputs, logabsdet
|
tts_voice.py
ADDED
@@ -0,0 +1,29 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
tts_order_voice = {'英语 (美国)-Jenny-女': 'en-US-JennyNeural',
|
2 |
+
'英语 (美国)-Guy-男': 'en-US-GuyNeural',
|
3 |
+
'英语 (美国)-Ana-女': 'en-US-AnaNeural',
|
4 |
+
'英语 (美国)-Aria-女': 'en-US-AriaNeural',
|
5 |
+
'英语 (美国)-Christopher-男': 'en-US-ChristopherNeural',
|
6 |
+
'英语 (美国)-Eric-男': 'en-US-EricNeural',
|
7 |
+
'英语 (美国)-Michelle-女': 'en-US-MichelleNeural',
|
8 |
+
'英语 (美国)-Roger-男': 'en-US-RogerNeural',
|
9 |
+
'韩语 (韩国)-Sun-Hi-女': 'ko-KR-SunHiNeural',
|
10 |
+
'韩语 (韩国)-InJoon-男': 'ko-KR-InJoonNeural',
|
11 |
+
'日语 (日本)-Nanami-女': 'ja-JP-NanamiNeural',
|
12 |
+
'日语 (日本)-Keita-男': 'ja-JP-KeitaNeural',
|
13 |
+
'法语 (法国)-Denise-女': 'fr-FR-DeniseNeural',
|
14 |
+
'法语 (法国)-Eloise-女': 'fr-FR-EloiseNeural',
|
15 |
+
'法语 (法国)-Henri-男': 'fr-FR-HenriNeural',
|
16 |
+
'普通话 (中国大陆)-Xiaoxiao-女': 'zh-CN-XiaoxiaoNeural',
|
17 |
+
'普通话 (中国大陆)-Yunyang-男': 'zh-CN-YunyangNeural',
|
18 |
+
'普通话 (中国大陆)-Yunxi-男': 'zh-CN-YunxiNeural',
|
19 |
+
'普通话 (中国大陆)-Xiaoyi-女': 'zh-CN-XiaoyiNeural',
|
20 |
+
'普通话 (中国大陆)-Yunjian-男': 'zh-CN-YunjianNeural',
|
21 |
+
'普通话 (中国大陆)-Yunxia-男': 'zh-CN-YunxiaNeural',
|
22 |
+
'东北话 (中国大陆)-Xiaobei-女': 'zh-CN-liaoning-XiaobeiNeural',
|
23 |
+
'中原官话 (中国陕西)-Xiaoni-女': 'zh-CN-shaanxi-XiaoniNeural',
|
24 |
+
'粤语 (中国香港)-HiuMaan-女': 'zh-HK-HiuMaanNeural',
|
25 |
+
'粤语 (中国香港)-HiuGaai-女': 'zh-HK-HiuGaaiNeural',
|
26 |
+
'粤语 (中国香港)-WanLung-男': 'zh-HK-WanLungNeural',
|
27 |
+
'台湾普通话-HsiaoChen-女': 'zh-TW-HsiaoChenNeural',
|
28 |
+
'台湾普通话-HsiaoYu-女': 'zh-TW-HsiaoYuNeural',
|
29 |
+
'台湾普通话-YunJhe-男': 'zh-TW-YunJheNeural'}
|
utils.py
ADDED
@@ -0,0 +1,194 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import re
|
2 |
+
import json
|
3 |
+
import numpy as np
|
4 |
+
|
5 |
+
|
6 |
+
def get_hparams_from_file(config_path):
|
7 |
+
with open(config_path, "r", encoding="utf-8") as f:
|
8 |
+
data = f.read()
|
9 |
+
config = json.loads(data)
|
10 |
+
|
11 |
+
hparams = HParams(**config)
|
12 |
+
return hparams
|
13 |
+
|
14 |
+
class HParams:
|
15 |
+
def __init__(self, **kwargs):
|
16 |
+
for k, v in kwargs.items():
|
17 |
+
if type(v) == dict:
|
18 |
+
v = HParams(**v)
|
19 |
+
self[k] = v
|
20 |
+
|
21 |
+
def keys(self):
|
22 |
+
return self.__dict__.keys()
|
23 |
+
|
24 |
+
def items(self):
|
25 |
+
return self.__dict__.items()
|
26 |
+
|
27 |
+
def values(self):
|
28 |
+
return self.__dict__.values()
|
29 |
+
|
30 |
+
def __len__(self):
|
31 |
+
return len(self.__dict__)
|
32 |
+
|
33 |
+
def __getitem__(self, key):
|
34 |
+
return getattr(self, key)
|
35 |
+
|
36 |
+
def __setitem__(self, key, value):
|
37 |
+
return setattr(self, key, value)
|
38 |
+
|
39 |
+
def __contains__(self, key):
|
40 |
+
return key in self.__dict__
|
41 |
+
|
42 |
+
def __repr__(self):
|
43 |
+
return self.__dict__.__repr__()
|
44 |
+
|
45 |
+
|
46 |
+
def string_to_bits(string, pad_len=8):
|
47 |
+
# Convert each character to its ASCII value
|
48 |
+
ascii_values = [ord(char) for char in string]
|
49 |
+
|
50 |
+
# Convert ASCII values to binary representation
|
51 |
+
binary_values = [bin(value)[2:].zfill(8) for value in ascii_values]
|
52 |
+
|
53 |
+
# Convert binary strings to integer arrays
|
54 |
+
bit_arrays = [[int(bit) for bit in binary] for binary in binary_values]
|
55 |
+
|
56 |
+
# Convert list of arrays to NumPy array
|
57 |
+
numpy_array = np.array(bit_arrays)
|
58 |
+
numpy_array_full = np.zeros((pad_len, 8), dtype=numpy_array.dtype)
|
59 |
+
numpy_array_full[:, 2] = 1
|
60 |
+
max_len = min(pad_len, len(numpy_array))
|
61 |
+
numpy_array_full[:max_len] = numpy_array[:max_len]
|
62 |
+
return numpy_array_full
|
63 |
+
|
64 |
+
|
65 |
+
def bits_to_string(bits_array):
|
66 |
+
# Convert each row of the array to a binary string
|
67 |
+
binary_values = [''.join(str(bit) for bit in row) for row in bits_array]
|
68 |
+
|
69 |
+
# Convert binary strings to ASCII values
|
70 |
+
ascii_values = [int(binary, 2) for binary in binary_values]
|
71 |
+
|
72 |
+
# Convert ASCII values to characters
|
73 |
+
output_string = ''.join(chr(value) for value in ascii_values)
|
74 |
+
|
75 |
+
return output_string
|
76 |
+
|
77 |
+
|
78 |
+
def split_sentence(text, min_len=10, language_str='[EN]'):
|
79 |
+
if language_str in ['EN']:
|
80 |
+
sentences = split_sentences_latin(text, min_len=min_len)
|
81 |
+
else:
|
82 |
+
sentences = split_sentences_zh(text, min_len=min_len)
|
83 |
+
return sentences
|
84 |
+
|
85 |
+
def split_sentences_latin(text, min_len=10):
|
86 |
+
"""Split Long sentences into list of short ones
|
87 |
+
|
88 |
+
Args:
|
89 |
+
str: Input sentences.
|
90 |
+
|
91 |
+
Returns:
|
92 |
+
List[str]: list of output sentences.
|
93 |
+
"""
|
94 |
+
# deal with dirty sentences
|
95 |
+
text = re.sub('[。!?;]', '.', text)
|
96 |
+
text = re.sub('[,]', ',', text)
|
97 |
+
text = re.sub('[“”]', '"', text)
|
98 |
+
text = re.sub('[‘’]', "'", text)
|
99 |
+
text = re.sub(r"[\<\>\(\)\[\]\"\«\»]+", "", text)
|
100 |
+
text = re.sub('[\n\t ]+', ' ', text)
|
101 |
+
text = re.sub('([,.!?;])', r'\1 $#!', text)
|
102 |
+
# split
|
103 |
+
sentences = [s.strip() for s in text.split('$#!')]
|
104 |
+
if len(sentences[-1]) == 0: del sentences[-1]
|
105 |
+
|
106 |
+
new_sentences = []
|
107 |
+
new_sent = []
|
108 |
+
count_len = 0
|
109 |
+
for ind, sent in enumerate(sentences):
|
110 |
+
# print(sent)
|
111 |
+
new_sent.append(sent)
|
112 |
+
count_len += len(sent.split(" "))
|
113 |
+
if count_len > min_len or ind == len(sentences) - 1:
|
114 |
+
count_len = 0
|
115 |
+
new_sentences.append(' '.join(new_sent))
|
116 |
+
new_sent = []
|
117 |
+
return merge_short_sentences_latin(new_sentences)
|
118 |
+
|
119 |
+
|
120 |
+
def merge_short_sentences_latin(sens):
|
121 |
+
"""Avoid short sentences by merging them with the following sentence.
|
122 |
+
|
123 |
+
Args:
|
124 |
+
List[str]: list of input sentences.
|
125 |
+
|
126 |
+
Returns:
|
127 |
+
List[str]: list of output sentences.
|
128 |
+
"""
|
129 |
+
sens_out = []
|
130 |
+
for s in sens:
|
131 |
+
# If the previous sentense is too short, merge them with
|
132 |
+
# the current sentence.
|
133 |
+
if len(sens_out) > 0 and len(sens_out[-1].split(" ")) <= 2:
|
134 |
+
sens_out[-1] = sens_out[-1] + " " + s
|
135 |
+
else:
|
136 |
+
sens_out.append(s)
|
137 |
+
try:
|
138 |
+
if len(sens_out[-1].split(" ")) <= 2:
|
139 |
+
sens_out[-2] = sens_out[-2] + " " + sens_out[-1]
|
140 |
+
sens_out.pop(-1)
|
141 |
+
except:
|
142 |
+
pass
|
143 |
+
return sens_out
|
144 |
+
|
145 |
+
def split_sentences_zh(text, min_len=10):
|
146 |
+
text = re.sub('[。!?;]', '.', text)
|
147 |
+
text = re.sub('[,]', ',', text)
|
148 |
+
# 将文本中的换行符、空格和制表符替换为空格
|
149 |
+
text = re.sub('[\n\t ]+', ' ', text)
|
150 |
+
# 在标点符号后添加一个空格
|
151 |
+
text = re.sub('([,.!?;])', r'\1 $#!', text)
|
152 |
+
# 分隔句子并去除前后空格
|
153 |
+
# sentences = [s.strip() for s in re.split('(。|!|?|;)', text)]
|
154 |
+
sentences = [s.strip() for s in text.split('$#!')]
|
155 |
+
if len(sentences[-1]) == 0: del sentences[-1]
|
156 |
+
|
157 |
+
new_sentences = []
|
158 |
+
new_sent = []
|
159 |
+
count_len = 0
|
160 |
+
for ind, sent in enumerate(sentences):
|
161 |
+
new_sent.append(sent)
|
162 |
+
count_len += len(sent)
|
163 |
+
if count_len > min_len or ind == len(sentences) - 1:
|
164 |
+
count_len = 0
|
165 |
+
new_sentences.append(' '.join(new_sent))
|
166 |
+
new_sent = []
|
167 |
+
return merge_short_sentences_zh(new_sentences)
|
168 |
+
|
169 |
+
|
170 |
+
def merge_short_sentences_zh(sens):
|
171 |
+
# return sens
|
172 |
+
"""Avoid short sentences by merging them with the following sentence.
|
173 |
+
|
174 |
+
Args:
|
175 |
+
List[str]: list of input sentences.
|
176 |
+
|
177 |
+
Returns:
|
178 |
+
List[str]: list of output sentences.
|
179 |
+
"""
|
180 |
+
sens_out = []
|
181 |
+
for s in sens:
|
182 |
+
# If the previous sentense is too short, merge them with
|
183 |
+
# the current sentence.
|
184 |
+
if len(sens_out) > 0 and len(sens_out[-1]) <= 2:
|
185 |
+
sens_out[-1] = sens_out[-1] + " " + s
|
186 |
+
else:
|
187 |
+
sens_out.append(s)
|
188 |
+
try:
|
189 |
+
if len(sens_out[-1]) <= 2:
|
190 |
+
sens_out[-2] = sens_out[-2] + " " + sens_out[-1]
|
191 |
+
sens_out.pop(-1)
|
192 |
+
except:
|
193 |
+
pass
|
194 |
+
return sens_out
|