Spaces:
Runtime error
Runtime error
File size: 8,724 Bytes
cdd0075 6f49966 b5baf02 469f43d 2b6c2bd c331e65 cdd0075 469f43d cdd0075 b5baf02 e707d28 82c08d7 e707d28 469f43d 6abb9e2 cdd0075 c331e65 469f43d bf33a49 82c08d7 e707d28 cdd0075 469f43d b5baf02 c331e65 b5baf02 c331e65 b5baf02 c331e65 b5baf02 cdd0075 b5baf02 c331e65 b5baf02 c331e65 cdd0075 c331e65 469f43d ca3a0e9 c331e65 b5baf02 cdd0075 469f43d cdd0075 469f43d cdd0075 469f43d cdd0075 6f49966 e707d28 cdd0075 c331e65 cdd0075 c331e65 469f43d cdd0075 b5baf02 469f43d cdd0075 469f43d 6f49966 469f43d e707d28 469f43d b5baf02 cdd0075 c331e65 b5baf02 6f49966 cdd0075 6f49966 6ef35b4 469f43d |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 |
import os
import sys
# sys.path.append(os.path.abspath(os.path.dirname(os.getcwd())))
# os.chdir("../")
import gradio as gr
import numpy as np
from pathlib import Path
from matplotlib import pyplot as plt
import torch
import tempfile
from lama_inpaint import inpaint_img_with_lama, build_lama_model, inpaint_img_with_builded_lama
from utils import load_img_to_array, save_array_to_img, dilate_mask, \
show_mask, show_points
from PIL import Image
sys.path.insert(0, str(Path(__file__).resolve().parent / "third_party" / "segment-anything"))
from segment_anything import SamPredictor, sam_model_registry
import argparse
def setup_args(parser):
parser.add_argument(
"--lama_config", type=str,
default="./third_party/lama/configs/prediction/default.yaml",
help="The path to the config file of lama model. "
"Default: the config of big-lama",
)
parser.add_argument(
"--lama_ckpt", type=str,
default="pretrained_models/big-lama",
help="The path to the lama checkpoint.",
)
parser.add_argument(
"--sam_ckpt", type=str,
default="./pretrained_models/sam_vit_h_4b8939.pth",
help="The path to the SAM checkpoint to use for mask generation.",
)
def mkstemp(suffix, dir=None):
fd, path = tempfile.mkstemp(suffix=f"{suffix}", dir=dir)
os.close(fd)
return Path(path)
def get_sam_feat(img):
model['sam'].set_image(img)
features = model['sam'].features
orig_h = model['sam'].orig_h
orig_w = model['sam'].orig_w
input_h = model['sam'].input_h
input_w = model['sam'].input_w
model['sam'].reset_image()
return features, orig_h, orig_w, input_h, input_w
def get_masked_img(img, w, h, features, orig_h, orig_w, input_h, input_w, dilate_kernel_size):
point_coords = [w, h]
point_labels = [1]
model['sam'].is_image_set = True
model['sam'].features = features
model['sam'].orig_h = orig_h
model['sam'].orig_w = orig_w
model['sam'].input_h = input_h
model['sam'].input_w = input_w
# model['sam'].set_image(img) # todo : update here for accelerating
masks, _, _ = model['sam'].predict(
point_coords=np.array([point_coords]),
point_labels=np.array(point_labels),
multimask_output=True,
)
masks = masks.astype(np.uint8) * 255
# dilate mask to avoid unmasked edge effect
if dilate_kernel_size is not None:
masks = [dilate_mask(mask, dilate_kernel_size) for mask in masks]
else:
masks = [mask for mask in masks]
figs = []
for idx, mask in enumerate(masks):
# save the pointed and masked image
tmp_p = mkstemp(".png")
dpi = plt.rcParams['figure.dpi']
height, width = img.shape[:2]
fig = plt.figure(figsize=(width/dpi/0.77, height/dpi/0.77))
plt.imshow(img)
plt.axis('off')
show_points(plt.gca(), [point_coords], point_labels,
size=(width*0.04)**2)
show_mask(plt.gca(), mask, random_color=False)
plt.tight_layout()
plt.savefig(tmp_p, bbox_inches='tight', pad_inches=0)
figs.append(fig)
plt.close()
return *figs, *masks
def get_inpainted_img(img, mask0, mask1, mask2):
lama_config = args.lama_config
device = "cuda" if torch.cuda.is_available() else "cpu"
out = []
for mask in [mask0, mask1, mask2]:
if len(mask.shape)==3:
mask = mask[:,:,0]
img_inpainted = inpaint_img_with_builded_lama(
model['lama'], img, mask, lama_config, device=device)
out.append(img_inpainted)
return out
# get args
parser = argparse.ArgumentParser()
setup_args(parser)
args = parser.parse_args(sys.argv[1:])
# build models
model = {}
# build the sam model
model_type="vit_h"
ckpt_p=args.sam_ckpt
model_sam = sam_model_registry[model_type](checkpoint=ckpt_p)
device = "cuda" if torch.cuda.is_available() else "cpu"
model_sam.to(device=device)
model['sam'] = SamPredictor(model_sam)
# build the lama model
lama_config = args.lama_config
lama_ckpt = args.lama_ckpt
device = "cuda" if torch.cuda.is_available() else "cpu"
model['lama'] = build_lama_model(lama_config, lama_ckpt, device=device)
button_size = (100,50)
with gr.Blocks() as demo:
features = gr.State(None)
orig_h = gr.State(None)
orig_w = gr.State(None)
input_h = gr.State(None)
input_w = gr.State(None)
with gr.Row().style(mobile_collapse=False, equal_height=True):
with gr.Column(variant="panel"):
with gr.Row():
gr.Markdown("## Input Image")
with gr.Row():
img = gr.Image(label="Input Image").style(height="200px")
with gr.Column(variant="panel"):
with gr.Row():
gr.Markdown("## Pointed Image")
with gr.Row():
img_pointed = gr.Plot(label='Pointed Image')
with gr.Column(variant="panel"):
with gr.Row():
gr.Markdown("## Control Panel")
with gr.Row():
w = gr.Number(label="Point Coordinate W")
h = gr.Number(label="Point Coordinate H")
dilate_kernel_size = gr.Slider(label="Dilate Kernel Size", minimum=0, maximum=100, step=1, value=15)
sam_mask = gr.Button("Predict Mask", variant="primary").style(full_width=True, size="sm")
lama = gr.Button("Inpaint Image", variant="primary").style(full_width=True, size="sm")
clear_button_image = gr.Button(value="Reset", label="Reset", variant="secondary").style(full_width=True, size="sm")
# todo: maybe we can delete this row, for it's unnecessary to show the original mask for customers
with gr.Row(variant="panel"):
with gr.Column():
with gr.Row():
gr.Markdown("## Segmentation Mask")
with gr.Row():
mask_0 = gr.outputs.Image(type="numpy", label="Segmentation Mask 0").style(height="200px")
mask_1 = gr.outputs.Image(type="numpy", label="Segmentation Mask 1").style(height="200px")
mask_2 = gr.outputs.Image(type="numpy", label="Segmentation Mask 2").style(height="200px")
with gr.Row(variant="panel"):
with gr.Column():
with gr.Row():
gr.Markdown("## Image with Mask")
with gr.Row():
img_with_mask_0 = gr.Plot(label="Image with Segmentation Mask 0")
img_with_mask_1 = gr.Plot(label="Image with Segmentation Mask 1")
img_with_mask_2 = gr.Plot(label="Image with Segmentation Mask 2")
with gr.Row(variant="panel"):
with gr.Column():
with gr.Row():
gr.Markdown("## Image Removed with Mask")
with gr.Row():
img_rm_with_mask_0 = gr.outputs.Image(
type="numpy", label="Image Removed with Segmentation Mask 0").style(height="200px")
img_rm_with_mask_1 = gr.outputs.Image(
type="numpy", label="Image Removed with Segmentation Mask 1").style(height="200px")
img_rm_with_mask_2 = gr.outputs.Image(
type="numpy", label="Image Removed with Segmentation Mask 2").style(height="200px")
def get_select_coords(img, evt: gr.SelectData):
dpi = plt.rcParams['figure.dpi']
height, width = img.shape[:2]
fig = plt.figure(figsize=(width/dpi/0.77, height/dpi/0.77))
plt.imshow(img)
plt.axis('off')
plt.tight_layout()
show_points(plt.gca(), [[evt.index[0], evt.index[1]]], [1],
size=(width*0.04)**2)
return evt.index[0], evt.index[1], fig
img.select(get_select_coords, [img], [w, h, img_pointed])
img.upload(get_sam_feat, [img], [features, orig_h, orig_w, input_h, input_w])
sam_mask.click(
get_masked_img,
[img, w, h, features, orig_h, orig_w, input_h, input_w, dilate_kernel_size],
[img_with_mask_0, img_with_mask_1, img_with_mask_2, mask_0, mask_1, mask_2]
)
lama.click(
get_inpainted_img,
[img, mask_0, mask_1, mask_2],
[img_rm_with_mask_0, img_rm_with_mask_1, img_rm_with_mask_2]
)
def reset(*args):
return [None for _ in args]
clear_button_image.click(
reset,
[img, features, img_pointed, w, h, mask_0, mask_1, mask_2, img_with_mask_0, img_with_mask_1, img_with_mask_2, img_rm_with_mask_0, img_rm_with_mask_1, img_rm_with_mask_2],
[img, features, img_pointed, w, h, mask_0, mask_1, mask_2, img_with_mask_0, img_with_mask_1, img_with_mask_2, img_rm_with_mask_0, img_rm_with_mask_1, img_rm_with_mask_2]
)
if __name__ == "__main__":
demo.launch()
|