Spaces:
Runtime error
Runtime error
File size: 5,049 Bytes
2a3194a d347764 900a679 d347764 2a3194a d347764 613f65f d347764 e5d5a17 d347764 2a3194a e5d5a17 2a3194a 8809df6 2a3194a d347764 9192af8 d347764 9192af8 f805e49 9192af8 cee96a5 f805e49 c737803 d347764 226ec3a d347764 f805e49 d347764 c737803 3946ba6 c737803 d347764 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 |
import os
import torch
import gradio as gr
import numpy as np
import torch
from datasets import load_dataset, Audio
from transformers import SpeechT5ForTextToSpeech, SpeechT5HifiGan, SpeechT5Processor, pipeline
from speechbrain.pretrained import EncoderClassifier
device = "cuda:0" if torch.cuda.is_available() else "cpu"
# load speech translation checkpoint
asr_pipe = pipeline("automatic-speech-recognition", model="openai/whisper-base", device=device)
# load text-to-speech checkpoint and speaker embeddings
processor = SpeechT5Processor.from_pretrained("microsoft/speecht5_tts")
# model = SpeechT5ForTextToSpeech.from_pretrained("microsoft/speecht5_tts").to(device)
model = SpeechT5ForTextToSpeech.from_pretrained(
"JanLilan/speecht5_finetuned_openslr-slr69-cat"
).to(device)
vocoder = SpeechT5HifiGan.from_pretrained("microsoft/speecht5_hifigan").to(device)
######################################################################################
################################## SPEAKER EMBEDDING #################################
######################################################################################
# we will try to translate with this voice embedding... Let's see what happen. else:
dataset = load_dataset("projecte-aina/openslr-slr69-ca-trimmed-denoised", split="train")
dataset = dataset.cast_column("audio", Audio(sampling_rate=16000))
# LOAD
spk_model_name = "speechbrain/spkrec-xvect-voxceleb"
speaker_model = EncoderClassifier.from_hparams(
source=spk_model_name,
run_opts={"device": device},
savedir=os.path.join("/tmp", spk_model_name),
)
def create_speaker_embedding(waveform):
with torch.no_grad():
speaker_embeddings = speaker_model.encode_batch(torch.tensor(waveform))
speaker_embeddings = torch.nn.functional.normalize(speaker_embeddings, dim=2)
speaker_embeddings = speaker_embeddings.squeeze().cpu().numpy()
return speaker_embeddings
# we must take one speaker embeding
checkpoint = "microsoft/speecht5_tts"
processor = SpeechT5Processor.from_pretrained(checkpoint)
# function to embedd
def prepare_dataset(example):
audio = example["audio"]
example = processor(
text=example["transcription"],
audio_target=audio["array"],
sampling_rate=audio["sampling_rate"],
return_attention_mask=False,
)
# strip off the batch dimension
example["labels"] = example["labels"][0]
# use SpeechBrain to obtain x-vector
example["speaker_embeddings"] = create_speaker_embedding(audio["array"])
return example
processed_example = prepare_dataset(dataset[2])
speaker_embeddings = torch.tensor(processed_example["speaker_embeddings"]).unsqueeze(0)
# embeddings_dataset = load_dataset("Matthijs/cmu-arctic-xvectors", split="validation")
# speaker_embeddings = torch.tensor(embeddings_dataset[7306]["xvector"]).unsqueeze(0)
def translate(audio):
outputs = asr_pipe(audio, max_new_tokens=256, generate_kwargs={"task": "transcribe", "language": "catalan"})
return outputs["text"]
def synthesise(text):
inputs = processor(text=text, return_tensors="pt")
speech = model.generate_speech(inputs["input_ids"].to(device), speaker_embeddings.to(device), vocoder=vocoder)
return speech.cpu()
def speech_to_speech_translation(audio):
translated_text = translate(audio)
synthesised_speech = synthesise(translated_text)
synthesised_speech = (synthesised_speech.numpy() * 32767).astype(np.int16)
return 16000, synthesised_speech
title = "Demo STST - Multilingual to Català Speech"
description = """
Demo for cascaded speech-to-speech translation (STST), mapping from source speech in any language to target speech in Català. Demo uses OpenAI's [Whisper Base](https://huggingface.co/openai/whisper-base) model for speech translation to català, and Microsoft's
[SpeechT5 TTS](https://huggingface.co/microsoft/speecht5_tts) model for text-to-speech fine-tuned on [projecte-aina/openslr-slr69-ca-trimmed-denoised](https://huggingface.co/datasets/projecte-aina/openslr-slr69-ca-trimmed-denoised).
This demo can be improve updating it with [projecte-aina/tts-ca-coqui-vits-multispeaker](https://huggingface.co/projecte-aina/tts-ca-coqui-vits-multispeaker) model:
![Cascaded STST](https://huggingface.co/datasets/huggingface-course/audio-course-images/resolve/main/s2st_cascaded.png "Diagram of cascaded speech to speech translation")
"""
demo = gr.Blocks()
mic_translate = gr.Interface(
fn=speech_to_speech_translation,
inputs=gr.Audio(source="microphone", type="filepath"),
outputs=gr.Audio(label="Generated Speech", type="numpy"),
title=title,
description=description,
)
file_translate = gr.Interface(
fn=speech_to_speech_translation,
inputs=gr.Audio(source="upload", type="filepath"),
outputs=gr.Audio(label="Generated Speech", type="numpy"),
examples=[["./example.wav"]],
title=title,
description=description,
)
with demo:
gr.TabbedInterface([mic_translate, file_translate], ["Microphone", "Audio File"])
demo.launch()
|