File size: 5,049 Bytes
2a3194a
 
d347764
 
 
900a679
d347764
2a3194a
d347764
 
 
 
613f65f
d347764
 
 
 
e5d5a17
 
 
 
d347764
2a3194a
 
 
 
e5d5a17
2a3194a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
8809df6
2a3194a
 
 
 
d347764
 
 
9192af8
d347764
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
9192af8
f805e49
9192af8
cee96a5
 
 
f805e49
 
 
 
c737803
 
 
d347764
226ec3a
d347764
f805e49
 
d347764
c737803
 
 
 
 
 
 
 
 
 
 
3946ba6
c737803
d347764
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
import os
import torch
import gradio as gr
import numpy as np
import torch
from datasets import load_dataset, Audio
from transformers import SpeechT5ForTextToSpeech, SpeechT5HifiGan, SpeechT5Processor, pipeline
from speechbrain.pretrained import EncoderClassifier

device = "cuda:0" if torch.cuda.is_available() else "cpu"

# load speech translation checkpoint
asr_pipe = pipeline("automatic-speech-recognition", model="openai/whisper-base", device=device)

# load text-to-speech checkpoint and speaker embeddings
processor = SpeechT5Processor.from_pretrained("microsoft/speecht5_tts")

# model = SpeechT5ForTextToSpeech.from_pretrained("microsoft/speecht5_tts").to(device)
model = SpeechT5ForTextToSpeech.from_pretrained(
    "JanLilan/speecht5_finetuned_openslr-slr69-cat"
).to(device)
vocoder = SpeechT5HifiGan.from_pretrained("microsoft/speecht5_hifigan").to(device)

######################################################################################
################################## SPEAKER EMBEDDING #################################
######################################################################################
# we will try to translate with this voice embedding... Let's see what happen. else:
dataset = load_dataset("projecte-aina/openslr-slr69-ca-trimmed-denoised", split="train")
dataset = dataset.cast_column("audio", Audio(sampling_rate=16000))
# LOAD
spk_model_name = "speechbrain/spkrec-xvect-voxceleb"
speaker_model = EncoderClassifier.from_hparams(
    source=spk_model_name,
    run_opts={"device": device},
    savedir=os.path.join("/tmp", spk_model_name),
)

def create_speaker_embedding(waveform):
    with torch.no_grad():
        speaker_embeddings = speaker_model.encode_batch(torch.tensor(waveform))
        speaker_embeddings = torch.nn.functional.normalize(speaker_embeddings, dim=2)
        speaker_embeddings = speaker_embeddings.squeeze().cpu().numpy()
    return speaker_embeddings

# we must take one speaker embeding
checkpoint = "microsoft/speecht5_tts"
processor = SpeechT5Processor.from_pretrained(checkpoint)

# function to embedd
def prepare_dataset(example):
    audio = example["audio"]

    example = processor(
        text=example["transcription"],
        audio_target=audio["array"],
        sampling_rate=audio["sampling_rate"],
        return_attention_mask=False,
    )

    # strip off the batch dimension
    example["labels"] = example["labels"][0]

    # use SpeechBrain to obtain x-vector
    example["speaker_embeddings"] = create_speaker_embedding(audio["array"])

    return example

processed_example = prepare_dataset(dataset[2])
speaker_embeddings = torch.tensor(processed_example["speaker_embeddings"]).unsqueeze(0)

# embeddings_dataset = load_dataset("Matthijs/cmu-arctic-xvectors", split="validation")
# speaker_embeddings = torch.tensor(embeddings_dataset[7306]["xvector"]).unsqueeze(0)


def translate(audio):
    outputs = asr_pipe(audio, max_new_tokens=256, generate_kwargs={"task": "transcribe", "language": "catalan"})
    return outputs["text"]


def synthesise(text):
    inputs = processor(text=text, return_tensors="pt")
    speech = model.generate_speech(inputs["input_ids"].to(device), speaker_embeddings.to(device), vocoder=vocoder)
    return speech.cpu()


def speech_to_speech_translation(audio):
    translated_text = translate(audio)
    synthesised_speech = synthesise(translated_text)
    synthesised_speech = (synthesised_speech.numpy() * 32767).astype(np.int16)
    return 16000, synthesised_speech


title = "Demo STST - Multilingual to Català Speech"
description = """
Demo for cascaded speech-to-speech translation (STST), mapping from source speech in any language to target speech in Català. Demo uses OpenAI's [Whisper Base](https://huggingface.co/openai/whisper-base) model for speech translation to català, and Microsoft's
[SpeechT5 TTS](https://huggingface.co/microsoft/speecht5_tts) model for text-to-speech fine-tuned on [projecte-aina/openslr-slr69-ca-trimmed-denoised](https://huggingface.co/datasets/projecte-aina/openslr-slr69-ca-trimmed-denoised). 

This demo can be improve updating it with [projecte-aina/tts-ca-coqui-vits-multispeaker](https://huggingface.co/projecte-aina/tts-ca-coqui-vits-multispeaker) model:

![Cascaded STST](https://huggingface.co/datasets/huggingface-course/audio-course-images/resolve/main/s2st_cascaded.png "Diagram of cascaded speech to speech translation")
"""

demo = gr.Blocks()

mic_translate = gr.Interface(
    fn=speech_to_speech_translation,
    inputs=gr.Audio(source="microphone", type="filepath"),
    outputs=gr.Audio(label="Generated Speech", type="numpy"),
    title=title,
    description=description,
)

file_translate = gr.Interface(
    fn=speech_to_speech_translation,
    inputs=gr.Audio(source="upload", type="filepath"),
    outputs=gr.Audio(label="Generated Speech", type="numpy"),
    examples=[["./example.wav"]],
    title=title,
    description=description,
)

with demo:
    gr.TabbedInterface([mic_translate, file_translate], ["Microphone", "Audio File"])

demo.launch()