File size: 10,455 Bytes
5434c4b
 
a01d3ba
5434c4b
7ab7be2
5434c4b
0c136d8
b7f7a57
fbb73cc
0c136d8
5434c4b
5f3a4af
 
 
303303b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7ab7be2
 
 
 
 
 
 
 
303303b
 
f26a894
5434c4b
b6ae739
5434c4b
02ebb6e
 
 
 
ea84073
13e3243
ea84073
b6ae739
 
 
5ae823f
b6ae739
 
 
5ae823f
5434c4b
 
642fae1
 
 
 
 
 
 
 
 
 
 
5434c4b
642fae1
0b259d2
 
 
 
 
 
 
 
ea84073
 
 
13e3243
 
 
0b259d2
 
 
 
 
 
 
d7e2287
13e3243
0b259d2
0c136d8
 
0b259d2
 
 
 
 
 
b6ae739
0c136d8
 
5f3a4af
0b259d2
5f3a4af
b6ae739
5f3a4af
a01d3ba
f26a894
 
 
303303b
 
 
 
 
 
 
 
 
 
 
 
 
 
f26a894
 
7ab7be2
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f26a894
303303b
f26a894
303303b
 
 
 
 
 
 
 
 
 
f26a894
7ab7be2
 
 
 
 
 
 
 
 
 
 
 
 
 
 
303303b
f26a894
303303b
7ab7be2
303303b
 
 
 
 
 
 
 
 
 
 
7ab7be2
303303b
 
 
 
 
 
 
 
5f3a4af
a01d3ba
39950c9
 
ff76f88
 
a01d3ba
b6ae739
0c136d8
5434c4b
b6ae739
5f3a4af
 
5434c4b
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
import gradio as gr

import analysis_util
import generate_annotated_diffs
import dataset_statistics

df_manual = generate_annotated_diffs.manual_data_with_annotated_diffs()
df_manual["end_to_start"] = False
df_manual["start_to_end"] = False
n_diffs_manual = len(df_manual)

df_synthetic = generate_annotated_diffs.synthetic_data_with_annotated_diffs()
n_diffs_synthetic = len(df_synthetic)


def golden():
    return df_manual


def e2s():
    return df_synthetic[(df_synthetic['end_to_start'] == True) & (df_synthetic['start_to_end'] == False)]


def s2e():
    return df_synthetic[(df_synthetic['end_to_start'] == False) & (df_synthetic['start_to_end'] == True)]


def e2s_s2e():
    return df_synthetic[(df_synthetic['end_to_start'] == True) & (df_synthetic['start_to_end'] == True)]


def synthetic():
    return df_synthetic[(df_synthetic['end_to_start'] == True) | (df_synthetic['start_to_end'] == True)]


STATISTICS = {"manual": dataset_statistics.get_statistics_for_df(df_manual),
              "e2s": dataset_statistics.get_statistics_for_df(e2s()),
              "s2e": dataset_statistics.get_statistics_for_df(s2e()),
              "e2s_s2e": dataset_statistics.get_statistics_for_df(e2s_s2e()),
              "synthetic": dataset_statistics.get_statistics_for_df(synthetic()),
              "all": dataset_statistics.get_statistics_for_df(df_synthetic)}

STATISTICS_T_TEST = dataset_statistics.t_test(STATISTICS, main_group='manual')

STAT_NAMES = list(STATISTICS['manual'].keys())


def update_dataset_view(diff_idx, df):
    diff_idx -= 1
    return (df.iloc[diff_idx]['annotated_diff'],
            df.iloc[diff_idx]['commit_msg_start'],
            df.iloc[diff_idx]['commit_msg_end'],
            df.iloc[diff_idx]['session'],
            str(df.iloc[diff_idx]['end_to_start']),
            str(df.iloc[diff_idx]['start_to_end']),
            f"https://github.com/{df.iloc[diff_idx]['repo']}/commit/{df.iloc[diff_idx]['hash']}",)


def update_dataset_view_manual(diff_idx):
    return update_dataset_view(diff_idx, df_manual)


def update_dataset_view_synthetic(diff_idx):
    return update_dataset_view(diff_idx, df_synthetic)


force_light_theme_js_func = """
function refresh() {
    const url = new URL(window.location);

    if (url.searchParams.get('__theme') !== 'light') {
        url.searchParams.set('__theme', 'light');
        window.location.href = url.href;
    }
}
"""

if __name__ == '__main__':
    with gr.Blocks(theme=gr.themes.Soft(), js=force_light_theme_js_func) as application:
        def dataset_view_tab(n_items):
            slider = gr.Slider(minimum=1, maximum=n_items, step=1, value=1,
                               label=f"Sample number (total: {n_items})")

            diff_view = gr.Highlightedtext(combine_adjacent=True, color_map={'+': "green", '-': "red"})
            start_view = gr.Textbox(interactive=False, label="Start message", container=True)
            end_view = gr.Textbox(interactive=False, label="End message", container=True)
            session_view = gr.Textbox(interactive=False, label="Session", container=True)
            is_end_to_start_view = gr.Textbox(interactive=False,
                                              label="Is generated on the 'end-to-start' synthesis step?",
                                              container=True)
            is_start_to_end_view = gr.Textbox(interactive=False,
                                              label="Is generated on the 'start-to-end' synthesis step?",
                                              container=True)
            link_view = gr.Markdown()

            view = [
                diff_view,
                start_view,
                end_view,
                session_view,
                is_end_to_start_view,
                is_start_to_end_view,
                link_view
            ]

            return slider, view


        with gr.Tab("Manual"):
            slider_manual, view_manual = dataset_view_tab(n_diffs_manual)

            slider_manual.change(update_dataset_view_manual, inputs=slider_manual,
                                 outputs=view_manual)

        with gr.Tab("Synthetic"):
            slider_synthetic, view_synthetic = dataset_view_tab(n_diffs_synthetic)

            slider_synthetic.change(update_dataset_view_synthetic, inputs=slider_synthetic,
                                    outputs=view_synthetic)
        with gr.Tab("Analysis"):
            def layout_for_statistics(statistics_group_name):
                gr.Markdown(f"### {statistics_group_name}")
                stats = STATISTICS[statistics_group_name]
                gr.Number(label="Count", interactive=False,
                          value=len(stats['deletions_norm']), min_width=00)
                gr.Number(label="Avg deletions number (rel to the initial msg length)", interactive=False,
                          value=stats['deletions_norm'].mean().item(), precision=3, min_width=00)
                gr.Number(label="Avg insertions number (rel to the result length)", interactive=False,
                          value=stats['insertions_norm'].mean().item(), precision=3, min_width=00)
                gr.Number(label="Avg changes number (rel to the initial msg length)", interactive=False,
                          value=stats['changes_norm'].mean().item(), precision=3, min_width=00)
                gr.Number(label="Avg deletions number", interactive=False,
                          value=stats['deletions'].mean().item(), precision=3, min_width=00)
                gr.Number(label="Avg insertions number", interactive=False,
                          value=stats['insertions'].mean().item(), precision=3, min_width=00)
                gr.Number(label="Avg changes number", interactive=False,
                          value=stats['changes'].mean().item(), precision=3, min_width=00)


            def layout_for_statistics_t_test(statistics_group_name):
                gr.Markdown(f"### {statistics_group_name}")
                stats = STATISTICS_T_TEST[statistics_group_name]
                gr.Number(label="Deletions number (rel to the initial msg length)", interactive=False,
                          value=stats['deletions_norm'], precision=3, min_width=00)
                gr.Number(label="Insertions number (rel to the result length)", interactive=False,
                          value=stats['insertions_norm'], precision=3, min_width=00)
                gr.Number(label="Changes number (rel to the initial msg length)", interactive=False,
                          value=stats['changes_norm'], precision=3, min_width=00)
                gr.Number(label="Deletions number", interactive=False,
                          value=stats['deletions'], precision=3, min_width=00)
                gr.Number(label="Insertions number", interactive=False,
                          value=stats['insertions'], precision=3, min_width=00)
                gr.Number(label="Changes number", interactive=False,
                          value=stats['changes'], precision=3, min_width=00)


            with gr.Row():
                with gr.Column(scale=1, min_width=100):
                    layout_for_statistics("manual")
                with gr.Column(scale=1, min_width=100):
                    layout_for_statistics("e2s")
                with gr.Column(scale=1, min_width=100):
                    layout_for_statistics("s2e")
                with gr.Column(scale=1, min_width=100):
                    layout_for_statistics("e2s_s2e")
                with gr.Column(scale=1, min_width=100):
                    layout_for_statistics("synthetic")
                with gr.Column(scale=1, min_width=100):
                    layout_for_statistics("all")

            # gr.Markdown(f"### Student t-test (p-value)")
            # with gr.Row():
            #     with gr.Column(scale=1, min_width=100):
            #         layout_for_statistics_t_test("manual")
            #     with gr.Column(scale=1, min_width=100):
            #         layout_for_statistics_t_test("e2s")
            #     with gr.Column(scale=1, min_width=100):
            #         layout_for_statistics_t_test("s2e")
            #     with gr.Column(scale=1, min_width=100):
            #         layout_for_statistics_t_test("e2s_s2e")
            #     with gr.Column(scale=1, min_width=100):
            #         layout_for_statistics_t_test("synthetic")
            #     with gr.Column(scale=1, min_width=100):
            #         layout_for_statistics_t_test("all")

            with gr.Row():
                with gr.Column(scale=1):
                    for stat_name in filter(lambda s: "_norm" not in s, STAT_NAMES):
                        chart = dataset_statistics.build_plotly_chart(
                            stat_golden=STATISTICS['manual'][stat_name],
                            stat_e2s=STATISTICS['e2s'][stat_name],
                            stat_s2e=STATISTICS['s2e'][stat_name],
                            stat_e2s_s2e=STATISTICS['e2s_s2e'][stat_name],
                            stat_name=stat_name
                        )

                        gr.Plot(value=chart)
                with gr.Column(scale=1):
                    with gr.Column(scale=1):
                        for stat_name in filter(lambda s: "_norm" in s, STAT_NAMES):
                            chart = dataset_statistics.build_plotly_chart(
                                stat_golden=STATISTICS['manual'][stat_name],
                                stat_e2s=STATISTICS['e2s'][stat_name],
                                stat_s2e=STATISTICS['s2e'][stat_name],
                                stat_e2s_s2e=STATISTICS['e2s_s2e'][stat_name],
                                stat_name=stat_name
                            )

                            gr.Plot(value=chart)

            gr.Markdown(f"### Reference-only correlations")
            gr.Markdown(value=analysis_util.get_correlations_for_groups(df_synthetic, right_side="ind").to_markdown())

            gr.Markdown(f"### Aggregated correlations")
            gr.Markdown(value=analysis_util.get_correlations_for_groups(df_synthetic, right_side="aggr").to_markdown())

        application.load(update_dataset_view_manual, inputs=slider_manual,
                         outputs=view_manual)

        application.load(update_dataset_view_synthetic, inputs=slider_synthetic,
                         outputs=view_synthetic)

    application.launch()