JoPmt commited on
Commit
f7d2f8e
1 Parent(s): 82ed5a0

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +3 -3
app.py CHANGED
@@ -13,7 +13,7 @@ from diffusers import KandinskyV22PriorPipeline, KandinskyV22ControlnetPipeline
13
 
14
  accelerator = Accelerator(cpu=True)
15
  MAX_SEED = np.iinfo(np.int32).max
16
- depth_estimator = accelerator.prepare(pipeline("depth-estimation", model="Intel/dpt-hybrid-midas"))
17
  pipe_prior = accelerator.prepare(KandinskyV22PriorPipeline.from_pretrained("kandinsky-community/kandinsky-2-2-prior", torch_dtype=torch.float32))
18
  pipe_prior.to("cpu")
19
  pipe = accelerator.prepare(KandinskyV22ControlnetPipeline.from_pretrained("kandinsky-community/kandinsky-2-2-controlnet-depth", torch_dtype=torch.float32))
@@ -28,7 +28,7 @@ def make_hint(image, depth_estimator):
28
  image = np.array(image)
29
  image = image[:, :, None]
30
  image = np.concatenate([image, image, image], axis=2)
31
- image = Image.fromarray(image)
32
  ##deputs = qrocessor(images=image, return_tensors="pt")
33
  ##with torch.no_grad():
34
  ## edputs = zodel(**deputs)
@@ -70,7 +70,7 @@ def make_hint(image, depth_estimator):
70
  ##image = (image * 127.5 + 127.5).clip(0, 255).astype(np.uint8)
71
  ##image = np.array(Image.fromarray(image))
72
  ##hint = torch.from_numpy(image).float() / 255.0
73
- return image
74
 
75
  def plex(prompt,goof):
76
  ##goof = Image.open(goof).resize((512, 512))
 
13
 
14
  accelerator = Accelerator(cpu=True)
15
  MAX_SEED = np.iinfo(np.int32).max
16
+ depth_estimator = pipeline("depth-estimation", model="Intel/dpt-hybrid-midas", torch_dtype=torch.float32)
17
  pipe_prior = accelerator.prepare(KandinskyV22PriorPipeline.from_pretrained("kandinsky-community/kandinsky-2-2-prior", torch_dtype=torch.float32))
18
  pipe_prior.to("cpu")
19
  pipe = accelerator.prepare(KandinskyV22ControlnetPipeline.from_pretrained("kandinsky-community/kandinsky-2-2-controlnet-depth", torch_dtype=torch.float32))
 
28
  image = np.array(image)
29
  image = image[:, :, None]
30
  image = np.concatenate([image, image, image], axis=2)
31
+ hint = Image.fromarray(image)
32
  ##deputs = qrocessor(images=image, return_tensors="pt")
33
  ##with torch.no_grad():
34
  ## edputs = zodel(**deputs)
 
70
  ##image = (image * 127.5 + 127.5).clip(0, 255).astype(np.uint8)
71
  ##image = np.array(Image.fromarray(image))
72
  ##hint = torch.from_numpy(image).float() / 255.0
73
+ return hint
74
 
75
  def plex(prompt,goof):
76
  ##goof = Image.open(goof).resize((512, 512))