File size: 7,636 Bytes
a4db55a
 
 
 
 
20e398f
a4db55a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
dc6d4cb
 
 
a4db55a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
dc6d4cb
a4db55a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
8fd757f
a4db55a
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
import os
from time import time_ns

import gradio as gr
import torch
from huggingface_hub import Repository
from llama_cpp import Llama, LLAMA_SPLIT_MODE_NONE
from transformers import LlamaForCausalLM, LlamaTokenizer

from kgen.generate import tag_gen
from kgen.metainfo import SPECIAL, TARGET


MODEL_PATH = "KBlueLeaf/DanTagGen"


@torch.no_grad()
def get_result(
    text_model: LlamaForCausalLM,
    tokenizer: LlamaTokenizer,
    rating: str = "",
    artist: str = "",
    characters: str = "",
    copyrights: str = "",
    target: str = "long",
    special_tags: list[str] = ["1girl"],
    general: str = "",
    aspect_ratio: float = 0.0,
    blacklist: str = "",
    escape_bracket: bool = False,
    temperature: float = 1.35,
):
    start = time_ns()
    print("=" * 50, "\n")
    # Use LLM to predict possible summary
    # This prompt allow model itself to make request longer based on what it learned
    # Which will be better for preference sim and pref-sum contrastive scorer
    prompt = f"""
rating: {rating or '<|empty|>'}
artist: {artist.strip() or '<|empty|>'}
characters: {characters.strip() or '<|empty|>'}
copyrights: {copyrights.strip() or '<|empty|>'}
aspect ratio: {f"{aspect_ratio:.1f}" or '<|empty|>'}
target: {'<|' + target + '|>' if target else '<|long|>'}
general: {", ".join(special_tags)}, {general.strip().strip(",")}<|input_end|>
""".strip()

    artist = artist.strip().strip(",").replace("_", " ")
    characters = characters.strip().strip(",").replace("_", " ")
    copyrights = copyrights.strip().strip(",").replace("_", " ")
    special_tags = [tag.strip().replace("_", " ") for tag in special_tags]
    general = general.strip().strip(",")
    black_list = set(
        [tag.strip().replace("_", " ") for tag in blacklist.strip().split(",")]
    )

    prompt_tags = special_tags + general.strip().strip(",").split(",")
    len_target = TARGET[target]
    llm_gen = ""

    for llm_gen, extra_tokens in tag_gen(
        text_model,
        tokenizer,
        prompt,
        prompt_tags,
        len_target,
        black_list,
        temperature=temperature,
        top_p=0.95,
        top_k=100,
        max_new_tokens=256,
        max_retry=5,
    ):
        yield "", llm_gen, f"Total cost time: {(time_ns()-start)/1e9:.2f}s"
    print()
    print("-" * 50)

    general = f"{general.strip().strip(',')}, {','.join(extra_tokens)}"
    tags = general.strip().split(",")
    tags = [tag.strip() for tag in tags if tag.strip()]
    special = special_tags + [tag for tag in tags if tag in SPECIAL]
    tags = [tag for tag in tags if tag not in special]

    final_prompt = ", ".join(special)
    if characters:
        final_prompt += f", \n\n{characters}"
    if copyrights:
        final_prompt += ", "
        if not characters:
            final_prompt += "\n\n"
        final_prompt += copyrights
    if artist:
        final_prompt += f", \n\n{artist}"
    final_prompt += f""", \n\n{', '.join(tags)},

masterpiece, newest, absurdres, {rating}"""

    print(final_prompt)
    print("=" * 50)

    if escape_bracket:
        final_prompt = (
            final_prompt.replace("[", "\\[")
            .replace("]", "\\]")
            .replace("(", "\\(")
            .replace(")", "\\)")
        )

    yield final_prompt, llm_gen, f"Total cost time: {(time_ns()-start)/1e9:.2f}s  |  Total general tags: {len(special+tags)}"


if __name__ == "__main__":
    tokenizer = LlamaTokenizer.from_pretrained(MODEL_PATH)
    text_model = LlamaForCausalLM.from_pretrained(MODEL_PATH)
    text_model = text_model.eval()

    def wrapper(
        rating: str,
        artist: str,
        characters: str,
        copyrights: str,
        target: str,
        special_tags: list[str],
        general: str,
        width: float,
        height: float,
        blacklist: str,
        escape_bracket: bool,
        temperature: float = 1.35,
    ):
        yield from get_result(
            text_model,
            tokenizer,
            rating,
            artist,
            characters,
            copyrights,
            target,
            special_tags,
            general,
            width / height,
            blacklist,
            escape_bracket,
            temperature,
        )

    with gr.Blocks(theme=gr.themes.Soft()) as demo:
        with gr.Row():
            with gr.Column(scale=4):
                with gr.Row():
                    with gr.Column(scale=2):
                        rating = gr.Radio(
                            ["safe", "sensitive", "nsfw", "nsfw, explicit"],
                            label="Rating",
                        )
                        special_tags = gr.Dropdown(
                            SPECIAL,
                            value=["1girl"],
                            label="Special tags",
                            multiselect=True,
                        )
                        characters = gr.Textbox(label="Characters")
                        copyrights = gr.Textbox(label="Copyrights(Series)")
                        artist = gr.Textbox(label="Artist")
                        target = gr.Radio(
                            ["very_short", "short", "long", "very_long"],
                            label="Target length",
                        )
                    with gr.Column(scale=2):
                        general = gr.TextArea(label="Input your general tags")
                        black_list = gr.TextArea(
                            label="tag Black list (seperated by comma)"
                        )
                        with gr.Row():
                            width = gr.Slider(
                                value=1024,
                                minimum=256,
                                maximum=4096,
                                step=32,
                                label="Width",
                            )
                            height = gr.Slider(
                                value=1024,
                                minimum=256,
                                maximum=4096,
                                step=32,
                                label="Height",
                            )
                        with gr.Row():
                            temperature = gr.Slider(
                                value=1.35,
                                minimum=0.1,
                                maximum=2,
                                step=0.05,
                                label="Temperature",
                            )
                            escape_bracket = gr.Checkbox(
                                value=False,
                                label="Escape bracket",
                            )
                submit = gr.Button("Submit")
            with gr.Column(scale=3):
                formated_result = gr.TextArea(
                    label="Final output", lines=14, show_copy_button=True
                )
                llm_result = gr.TextArea(label="LLM output", lines=10)
                cost_time = gr.Markdown()
        submit.click(
            wrapper,
            inputs=[
                rating,
                artist,
                characters,
                copyrights,
                target,
                special_tags,
                general,
                width,
                height,
                black_list,
                escape_bracket,
                temperature,
            ],
            outputs=[
                formated_result,
                llm_result,
                cost_time,
            ],
            show_progress=True,
        )

    demo.launch()