Spaces:
Running
on
Zero
Running
on
Zero
File size: 7,636 Bytes
a4db55a 20e398f a4db55a dc6d4cb a4db55a dc6d4cb a4db55a |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 |
import os
from time import time_ns
import gradio as gr
import torch
from huggingface_hub import Repository
from llama_cpp import Llama, LLAMA_SPLIT_MODE_NONE
from transformers import LlamaForCausalLM, LlamaTokenizer
from kgen.generate import tag_gen
from kgen.metainfo import SPECIAL, TARGET
MODEL_PATH = "KBlueLeaf/DanTagGen"
@torch.no_grad()
def get_result(
text_model: LlamaForCausalLM,
tokenizer: LlamaTokenizer,
rating: str = "",
artist: str = "",
characters: str = "",
copyrights: str = "",
target: str = "long",
special_tags: list[str] = ["1girl"],
general: str = "",
aspect_ratio: float = 0.0,
blacklist: str = "",
escape_bracket: bool = False,
temperature: float = 1.35,
):
start = time_ns()
print("=" * 50, "\n")
# Use LLM to predict possible summary
# This prompt allow model itself to make request longer based on what it learned
# Which will be better for preference sim and pref-sum contrastive scorer
prompt = f"""
rating: {rating or '<|empty|>'}
artist: {artist.strip() or '<|empty|>'}
characters: {characters.strip() or '<|empty|>'}
copyrights: {copyrights.strip() or '<|empty|>'}
aspect ratio: {f"{aspect_ratio:.1f}" or '<|empty|>'}
target: {'<|' + target + '|>' if target else '<|long|>'}
general: {", ".join(special_tags)}, {general.strip().strip(",")}<|input_end|>
""".strip()
artist = artist.strip().strip(",").replace("_", " ")
characters = characters.strip().strip(",").replace("_", " ")
copyrights = copyrights.strip().strip(",").replace("_", " ")
special_tags = [tag.strip().replace("_", " ") for tag in special_tags]
general = general.strip().strip(",")
black_list = set(
[tag.strip().replace("_", " ") for tag in blacklist.strip().split(",")]
)
prompt_tags = special_tags + general.strip().strip(",").split(",")
len_target = TARGET[target]
llm_gen = ""
for llm_gen, extra_tokens in tag_gen(
text_model,
tokenizer,
prompt,
prompt_tags,
len_target,
black_list,
temperature=temperature,
top_p=0.95,
top_k=100,
max_new_tokens=256,
max_retry=5,
):
yield "", llm_gen, f"Total cost time: {(time_ns()-start)/1e9:.2f}s"
print()
print("-" * 50)
general = f"{general.strip().strip(',')}, {','.join(extra_tokens)}"
tags = general.strip().split(",")
tags = [tag.strip() for tag in tags if tag.strip()]
special = special_tags + [tag for tag in tags if tag in SPECIAL]
tags = [tag for tag in tags if tag not in special]
final_prompt = ", ".join(special)
if characters:
final_prompt += f", \n\n{characters}"
if copyrights:
final_prompt += ", "
if not characters:
final_prompt += "\n\n"
final_prompt += copyrights
if artist:
final_prompt += f", \n\n{artist}"
final_prompt += f""", \n\n{', '.join(tags)},
masterpiece, newest, absurdres, {rating}"""
print(final_prompt)
print("=" * 50)
if escape_bracket:
final_prompt = (
final_prompt.replace("[", "\\[")
.replace("]", "\\]")
.replace("(", "\\(")
.replace(")", "\\)")
)
yield final_prompt, llm_gen, f"Total cost time: {(time_ns()-start)/1e9:.2f}s | Total general tags: {len(special+tags)}"
if __name__ == "__main__":
tokenizer = LlamaTokenizer.from_pretrained(MODEL_PATH)
text_model = LlamaForCausalLM.from_pretrained(MODEL_PATH)
text_model = text_model.eval()
def wrapper(
rating: str,
artist: str,
characters: str,
copyrights: str,
target: str,
special_tags: list[str],
general: str,
width: float,
height: float,
blacklist: str,
escape_bracket: bool,
temperature: float = 1.35,
):
yield from get_result(
text_model,
tokenizer,
rating,
artist,
characters,
copyrights,
target,
special_tags,
general,
width / height,
blacklist,
escape_bracket,
temperature,
)
with gr.Blocks(theme=gr.themes.Soft()) as demo:
with gr.Row():
with gr.Column(scale=4):
with gr.Row():
with gr.Column(scale=2):
rating = gr.Radio(
["safe", "sensitive", "nsfw", "nsfw, explicit"],
label="Rating",
)
special_tags = gr.Dropdown(
SPECIAL,
value=["1girl"],
label="Special tags",
multiselect=True,
)
characters = gr.Textbox(label="Characters")
copyrights = gr.Textbox(label="Copyrights(Series)")
artist = gr.Textbox(label="Artist")
target = gr.Radio(
["very_short", "short", "long", "very_long"],
label="Target length",
)
with gr.Column(scale=2):
general = gr.TextArea(label="Input your general tags")
black_list = gr.TextArea(
label="tag Black list (seperated by comma)"
)
with gr.Row():
width = gr.Slider(
value=1024,
minimum=256,
maximum=4096,
step=32,
label="Width",
)
height = gr.Slider(
value=1024,
minimum=256,
maximum=4096,
step=32,
label="Height",
)
with gr.Row():
temperature = gr.Slider(
value=1.35,
minimum=0.1,
maximum=2,
step=0.05,
label="Temperature",
)
escape_bracket = gr.Checkbox(
value=False,
label="Escape bracket",
)
submit = gr.Button("Submit")
with gr.Column(scale=3):
formated_result = gr.TextArea(
label="Final output", lines=14, show_copy_button=True
)
llm_result = gr.TextArea(label="LLM output", lines=10)
cost_time = gr.Markdown()
submit.click(
wrapper,
inputs=[
rating,
artist,
characters,
copyrights,
target,
special_tags,
general,
width,
height,
black_list,
temperature,
escape_bracket,
],
outputs=[
formated_result,
llm_result,
cost_time,
],
show_progress=True,
)
demo.launch()
|