File size: 9,830 Bytes
293494b
 
 
 
 
 
 
 
a4db55a
 
 
41acb2e
a4db55a
 
 
 
 
 
 
 
d510fba
89f225d
4a7ac82
a4db55a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
89f225d
 
0d5be9b
 
 
 
 
 
 
89f225d
 
 
 
a4db55a
edff9b1
a4db55a
89f225d
a4db55a
 
 
 
 
 
 
 
 
 
 
 
 
89f225d
a4db55a
 
dc6d4cb
a4db55a
 
 
 
 
 
 
 
 
 
 
 
 
 
8ea4ab5
 
89f225d
 
2296eae
8ea4ab5
2296eae
 
 
d5cd173
 
2296eae
 
 
 
 
 
d5cd173
 
 
 
 
 
 
 
89f225d
 
a4db55a
 
 
 
 
 
061237a
a4db55a
 
 
 
 
 
 
 
 
 
 
 
 
061237a
a4db55a
 
 
89f225d
a4db55a
89f225d
a4db55a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
89f225d
 
 
 
 
a4db55a
 
 
 
 
 
 
 
 
 
89f225d
a4db55a
 
 
 
 
 
 
 
 
 
 
8fd757f
a4db55a
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
import subprocess

subprocess.run(
    "pip install flash-attn --no-build-isolation",
    env={"FLASH_ATTENTION_SKIP_CUDA_BUILD": "TRUE"},
    shell=True,
)

import os
from time import time_ns

import spaces
import gradio as gr
import torch
from transformers import LlamaForCausalLM, LlamaTokenizer

from kgen.generate import tag_gen
from kgen.metainfo import SPECIAL, TARGET


MODEL_PATHS = ["KBlueLeaf/DanTagGen-alpha", "KBlueLeaf/DanTagGen-beta", "KBlueLeaf/DanTagGen-gamma"]
DEVICE = "cuda" if torch.cuda.is_available() else "cpu"
print(f"Using device: {DEVICE}")


@torch.no_grad()
def get_result(
    text_model: LlamaForCausalLM,
    tokenizer: LlamaTokenizer,
    rating: str = "",
    artist: str = "",
    characters: str = "",
    copyrights: str = "",
    target: str = "long",
    special_tags: list[str] = ["1girl"],
    general: str = "",
    aspect_ratio: float = 0.0,
    blacklist: str = "",
    escape_bracket: bool = False,
    temperature: float = 1.35,
):
    start = time_ns()
    print("=" * 50, "\n")
    # Use LLM to predict possible summary
    # This prompt allow model itself to make request longer based on what it learned
    # Which will be better for preference sim and pref-sum contrastive scorer
    prompt = f"""
rating: {rating or '<|empty|>'}
artist: {artist.strip() or '<|empty|>'}
characters: {characters.strip() or '<|empty|>'}
copyrights: {copyrights.strip() or '<|empty|>'}
aspect ratio: {f"{aspect_ratio:.1f}" or '<|empty|>'}
target: {'<|' + target + '|>' if target else '<|long|>'}
general: {", ".join(special_tags)}, {general.strip().strip(",")}<|input_end|>
""".strip()

    artist = artist.strip().strip(",").replace("_", " ")
    characters = characters.strip().strip(",").replace("_", " ")
    copyrights = copyrights.strip().strip(",").replace("_", " ")
    special_tags = [tag.strip().replace("_", " ") for tag in special_tags]
    general = general.strip().strip(",")
    black_list = set(
        [tag.strip().replace("_", " ") for tag in blacklist.strip().split(",")]
    )

    prompt_tags = special_tags + general.strip().strip(",").split(",")
    len_target = TARGET[target]
    llm_gen = ""

    for llm_gen, extra_tokens in tag_gen(
        text_model,
        tokenizer,
        prompt,
        prompt_tags,
        len_target,
        black_list,
        temperature=temperature,
        top_p=0.95,
        top_k=100,
        max_new_tokens=256,
        max_retry=5,
    ):
        yield "", llm_gen, f"Total cost time: {(time_ns()-start)/1e9:.2f}s"
    print()
    print("-" * 50)

    general = f"{general.strip().strip(',')}, {','.join(extra_tokens)}"
    tags = general.strip().split(",")
    tags = [tag.strip() for tag in tags if tag.strip()]
    special = special_tags + [tag for tag in tags if tag in SPECIAL]
    tags = [tag for tag in tags if tag not in special]

    final_prompt = ", ".join(special)
    if characters:
        final_prompt += f", \n\n{characters}"
    if copyrights:
        final_prompt += ", "
        if not characters:
            final_prompt += "\n\n"
        final_prompt += copyrights
    if artist:
        final_prompt += f", \n\n{artist}"
    final_prompt += f""", \n\n{', '.join(tags)},

masterpiece, newest, absurdres, {rating}"""

    print(final_prompt)
    print("=" * 50)

    if escape_bracket:
        final_prompt = (
            final_prompt.replace("[", "\\[")
            .replace("]", "\\]")
            .replace("(", "\\(")
            .replace(")", "\\)")
        )

    yield final_prompt, llm_gen, f"Total cost time: {(time_ns()-start)/1e9:.2f}s  |  Total general tags: {len(special+tags)}"


if __name__ == "__main__":
    models = {
        model_path: [
            LlamaForCausalLM.from_pretrained(
                model_path, attn_implementation="flash_attention_2"
            )
            .requires_grad_(False)
            .eval()
            .half()
            .to(DEVICE),
            LlamaTokenizer.from_pretrained(model_path),
        ]
        for model_path in MODEL_PATHS
    }

    @spaces.GPU
    def wrapper(
        model: str,
        rating: str,
        artist: str,
        characters: str,
        copyrights: str,
        target: str,
        special_tags: list[str],
        general: str,
        width: float,
        height: float,
        blacklist: str,
        escape_bracket: bool,
        temperature: float = 1.35,
    ):
        text_model, tokenizer = models[model]
        yield from get_result(
            text_model,
            tokenizer,
            rating,
            artist,
            characters,
            copyrights,
            target,
            special_tags,
            general,
            width / height,
            blacklist,
            escape_bracket,
            temperature,
        )

    with gr.Blocks(theme=gr.themes.Soft()) as demo:
        gr.Markdown("""# DanTagGen beta DEMO""")
        with gr.Accordion("Introduction and Instructions"):
            gr.Markdown(
                """
#### What is this:
DanTagGen(Danbooru Tag Generator) is a LLM model designed for generating Danboou Tags with provided informations.<br>
It aims to provide user a more convinient way to make prompts for Text2Image model which is trained on Danbooru datasets.

#### How to use it:
1. Fill the informations on the left section.
2. Put the general tags you want to use into the "Input your general tags" textarea. ("prompt before refined")
3. If you want to ban some tags. Put them into the "black list" text area.
4. Choose the target length: **Long or Short is recommended**
    * Very Short: around 10 tags
    * Short: around 20 tags
    * Long: around 40 tags
    * very long: around 60 tags
5. Adjust some parameters
    * Width and height is for calculating the aspect ratio. It is recommended to directly put the height and width you want to use
6. Submit!!
7. You will get formated result on the upper-right section, LLM raw result on the bottom-right section.

#### Notice
The formated result use same format as what Kohaku-XL Delta used. <br>
The performance of using the output from this demo for other model is not guaranteed.
"""
            )
        with gr.Row():
            with gr.Column(scale=4):
                with gr.Row():
                    with gr.Column(scale=2):
                        rating = gr.Radio(
                            ["safe", "sensitive", "nsfw", "nsfw, explicit"],
                            value="safe",
                            label="Rating",
                        )
                        special_tags = gr.Dropdown(
                            SPECIAL,
                            value=["1girl"],
                            label="Special tags",
                            multiselect=True,
                        )
                        characters = gr.Textbox(label="Characters")
                        copyrights = gr.Textbox(label="Copyrights(Series)")
                        artist = gr.Textbox(label="Artist")
                        target = gr.Radio(
                            ["very_short", "short", "long", "very_long"],
                            value="long",
                            label="Target length",
                        )
                    with gr.Column(scale=2):
                        general = gr.TextArea(label="Input your general tags", lines=6)
                        black_list = gr.TextArea(
                            label="tag Black list (seperated by comma)", lines=5
                        )
                        with gr.Row():
                            width = gr.Slider(
                                value=1024,
                                minimum=256,
                                maximum=4096,
                                step=32,
                                label="Width",
                            )
                            height = gr.Slider(
                                value=1024,
                                minimum=256,
                                maximum=4096,
                                step=32,
                                label="Height",
                            )
                        with gr.Row():
                            temperature = gr.Slider(
                                value=1.35,
                                minimum=0.1,
                                maximum=2,
                                step=0.05,
                                label="Temperature",
                            )
                            escape_bracket = gr.Checkbox(
                                value=False,
                                label="Escape bracket",
                            )
                        model = gr.Dropdown(
                            list(models.keys()),
                            value=list(models.keys())[-1],
                            label="Model",
                        )
                submit = gr.Button("Submit")
            with gr.Column(scale=3):
                formated_result = gr.TextArea(
                    label="Final output", lines=14, show_copy_button=True
                )
                llm_result = gr.TextArea(label="LLM output", lines=10)
                cost_time = gr.Markdown()
        submit.click(
            wrapper,
            inputs=[
                model,
                rating,
                artist,
                characters,
                copyrights,
                target,
                special_tags,
                general,
                width,
                height,
                black_list,
                escape_bracket,
                temperature,
            ],
            outputs=[
                formated_result,
                llm_result,
                cost_time,
            ],
            show_progress=True,
        )

    demo.launch()