Spaces:
Running
Running
# -*- coding: utf-8 -*- | |
""" | |
Created on Mon Apr 24 15:43:29 2017 | |
@author: zhaoy | |
""" | |
""" | |
@Modified by yangxy ([email protected]) | |
""" | |
import cv2 | |
import numpy as np | |
from skimage import transform as trans | |
# reference facial points, a list of coordinates (x,y) | |
REFERENCE_FACIAL_POINTS = [ | |
[30.29459953, 51.69630051], | |
[65.53179932, 51.50139999], | |
[48.02519989, 71.73660278], | |
[33.54930115, 92.3655014], | |
[62.72990036, 92.20410156] | |
] | |
DEFAULT_CROP_SIZE = (96, 112) | |
def _umeyama(src, dst, estimate_scale=True, scale=1.0): | |
"""Estimate N-D similarity transformation with or without scaling. | |
Parameters | |
---------- | |
src : (M, N) array | |
Source coordinates. | |
dst : (M, N) array | |
Destination coordinates. | |
estimate_scale : bool | |
Whether to estimate scaling factor. | |
Returns | |
------- | |
T : (N + 1, N + 1) | |
The homogeneous similarity transformation matrix. The matrix contains | |
NaN values only if the problem is not well-conditioned. | |
References | |
---------- | |
.. [1] "Least-squares estimation of transformation parameters between two | |
point patterns", Shinji Umeyama, PAMI 1991, :DOI:`10.1109/34.88573` | |
""" | |
num = src.shape[0] | |
dim = src.shape[1] | |
# Compute mean of src and dst. | |
src_mean = src.mean(axis=0) | |
dst_mean = dst.mean(axis=0) | |
# Subtract mean from src and dst. | |
src_demean = src - src_mean | |
dst_demean = dst - dst_mean | |
# Eq. (38). | |
A = dst_demean.T @ src_demean / num | |
# Eq. (39). | |
d = np.ones((dim,), dtype=np.double) | |
if np.linalg.det(A) < 0: | |
d[dim - 1] = -1 | |
T = np.eye(dim + 1, dtype=np.double) | |
U, S, V = np.linalg.svd(A) | |
# Eq. (40) and (43). | |
rank = np.linalg.matrix_rank(A) | |
if rank == 0: | |
return np.nan * T | |
elif rank == dim - 1: | |
if np.linalg.det(U) * np.linalg.det(V) > 0: | |
T[:dim, :dim] = U @ V | |
else: | |
s = d[dim - 1] | |
d[dim - 1] = -1 | |
T[:dim, :dim] = U @ np.diag(d) @ V | |
d[dim - 1] = s | |
else: | |
T[:dim, :dim] = U @ np.diag(d) @ V | |
if estimate_scale: | |
# Eq. (41) and (42). | |
scale = 1.0 / src_demean.var(axis=0).sum() * (S @ d) | |
else: | |
scale = scale | |
T[:dim, dim] = dst_mean - scale * (T[:dim, :dim] @ src_mean.T) | |
T[:dim, :dim] *= scale | |
return T, scale | |
class FaceWarpException(Exception): | |
def __str__(self): | |
return 'In File {}:{}'.format( | |
__file__, super.__str__(self)) | |
def get_reference_facial_points(output_size=None, | |
inner_padding_factor=0.0, | |
outer_padding=(0, 0), | |
default_square=False): | |
tmp_5pts = np.array(REFERENCE_FACIAL_POINTS) | |
tmp_crop_size = np.array(DEFAULT_CROP_SIZE) | |
# 0) make the inner region a square | |
if default_square: | |
size_diff = max(tmp_crop_size) - tmp_crop_size | |
tmp_5pts += size_diff / 2 | |
tmp_crop_size += size_diff | |
if (output_size and | |
output_size[0] == tmp_crop_size[0] and | |
output_size[1] == tmp_crop_size[1]): | |
print('output_size == DEFAULT_CROP_SIZE {}: return default reference points'.format(tmp_crop_size)) | |
return tmp_5pts | |
if (inner_padding_factor == 0 and | |
outer_padding == (0, 0)): | |
if output_size==None: | |
print('No paddings to do: return default reference points') | |
return tmp_5pts | |
else: | |
raise FaceWarpException( | |
'No paddings to do, output_size must be None or {}'.format(tmp_crop_size)) | |
# check output size | |
if not (0 <= inner_padding_factor <= 1.0): | |
raise FaceWarpException('Not (0 <= inner_padding_factor <= 1.0)') | |
if ((inner_padding_factor > 0 or outer_padding[0] > 0 or outer_padding[1] > 0) | |
and output_size==None): | |
output_size = tmp_crop_size * \ | |
(1 + inner_padding_factor * 2).astype(np.int32) | |
output_size += np.array(outer_padding) | |
print(' deduced from paddings, output_size = ', output_size) | |
if not (outer_padding[0] < output_size[0] | |
and outer_padding[1] < output_size[1]): | |
raise FaceWarpException('Not (outer_padding[0] < output_size[0]' | |
'and outer_padding[1] < output_size[1])') | |
# 1) pad the inner region according inner_padding_factor | |
# print('---> STEP1: pad the inner region according inner_padding_factor') | |
if inner_padding_factor > 0: | |
size_diff = tmp_crop_size * inner_padding_factor * 2 | |
tmp_5pts += size_diff / 2 | |
tmp_crop_size += np.round(size_diff).astype(np.int32) | |
# print(' crop_size = ', tmp_crop_size) | |
# print(' reference_5pts = ', tmp_5pts) | |
# 2) resize the padded inner region | |
# print('---> STEP2: resize the padded inner region') | |
size_bf_outer_pad = np.array(output_size) - np.array(outer_padding) * 2 | |
# print(' crop_size = ', tmp_crop_size) | |
# print(' size_bf_outer_pad = ', size_bf_outer_pad) | |
if size_bf_outer_pad[0] * tmp_crop_size[1] != size_bf_outer_pad[1] * tmp_crop_size[0]: | |
raise FaceWarpException('Must have (output_size - outer_padding)' | |
'= some_scale * (crop_size * (1.0 + inner_padding_factor)') | |
scale_factor = size_bf_outer_pad[0].astype(np.float32) / tmp_crop_size[0] | |
# print(' resize scale_factor = ', scale_factor) | |
tmp_5pts = tmp_5pts * scale_factor | |
# size_diff = tmp_crop_size * (scale_factor - min(scale_factor)) | |
# tmp_5pts = tmp_5pts + size_diff / 2 | |
tmp_crop_size = size_bf_outer_pad | |
# print(' crop_size = ', tmp_crop_size) | |
# print(' reference_5pts = ', tmp_5pts) | |
# 3) add outer_padding to make output_size | |
reference_5point = tmp_5pts + np.array(outer_padding) | |
tmp_crop_size = output_size | |
# print('---> STEP3: add outer_padding to make output_size') | |
# print(' crop_size = ', tmp_crop_size) | |
# print(' reference_5pts = ', tmp_5pts) | |
# | |
# print('===> end get_reference_facial_points\n') | |
return reference_5point | |
def get_affine_transform_matrix(src_pts, dst_pts): | |
tfm = np.float32([[1, 0, 0], [0, 1, 0]]) | |
n_pts = src_pts.shape[0] | |
ones = np.ones((n_pts, 1), src_pts.dtype) | |
src_pts_ = np.hstack([src_pts, ones]) | |
dst_pts_ = np.hstack([dst_pts, ones]) | |
A, res, rank, s = np.linalg.lstsq(src_pts_, dst_pts_) | |
if rank == 3: | |
tfm = np.float32([ | |
[A[0, 0], A[1, 0], A[2, 0]], | |
[A[0, 1], A[1, 1], A[2, 1]] | |
]) | |
elif rank == 2: | |
tfm = np.float32([ | |
[A[0, 0], A[1, 0], 0], | |
[A[0, 1], A[1, 1], 0] | |
]) | |
return tfm | |
def warp_and_crop_face(src_img, | |
facial_pts, | |
reference_pts=None, | |
crop_size=(96, 112), | |
align_type='smilarity'): #smilarity cv2_affine affine | |
if reference_pts is None: | |
if crop_size[0] == 96 and crop_size[1] == 112: | |
reference_pts = REFERENCE_FACIAL_POINTS | |
else: | |
default_square = False | |
inner_padding_factor = 0 | |
outer_padding = (0, 0) | |
output_size = crop_size | |
reference_pts = get_reference_facial_points(output_size, | |
inner_padding_factor, | |
outer_padding, | |
default_square) | |
ref_pts = np.float32(reference_pts) | |
ref_pts_shp = ref_pts.shape | |
if max(ref_pts_shp) < 3 or min(ref_pts_shp) != 2: | |
raise FaceWarpException( | |
'reference_pts.shape must be (K,2) or (2,K) and K>2') | |
if ref_pts_shp[0] == 2: | |
ref_pts = ref_pts.T | |
src_pts = np.float32(facial_pts) | |
src_pts_shp = src_pts.shape | |
if max(src_pts_shp) < 3 or min(src_pts_shp) != 2: | |
raise FaceWarpException( | |
'facial_pts.shape must be (K,2) or (2,K) and K>2') | |
if src_pts_shp[0] == 2: | |
src_pts = src_pts.T | |
if src_pts.shape != ref_pts.shape: | |
raise FaceWarpException( | |
'facial_pts and reference_pts must have the same shape') | |
if align_type=='cv2_affine': | |
tfm = cv2.getAffineTransform(src_pts[0:3], ref_pts[0:3]) | |
tfm_inv = cv2.getAffineTransform(ref_pts[0:3], src_pts[0:3]) | |
elif align_type=='affine': | |
tfm = get_affine_transform_matrix(src_pts, ref_pts) | |
tfm_inv = get_affine_transform_matrix(ref_pts, src_pts) | |
else: | |
params, scale = _umeyama(src_pts, ref_pts) | |
tfm = params[:2, :] | |
params, _ = _umeyama(ref_pts, src_pts, False, scale=1.0/scale) | |
tfm_inv = params[:2, :] | |
face_img = cv2.warpAffine(src_img, tfm, (crop_size[0], crop_size[1]), flags=3) | |
return face_img, tfm_inv |