File size: 11,184 Bytes
0f8ec45
 
 
 
 
2d30d63
0f8ec45
1fd4564
f86e5bd
e4cb9b4
0f8ec45
f86e5bd
 
 
 
 
 
 
d50653b
f86e5bd
 
a6abdc9
0f8ec45
ed2d2b6
0f8ec45
 
 
 
 
089c3bd
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2d30d63
ed2d2b6
089c3bd
 
ac08ca7
089c3bd
 
0f8ec45
60c673a
f86e5bd
52d72c6
1a36e0e
8b65031
f86e5bd
52d72c6
1a36e0e
ed2d2b6
519d843
3142fb1
 
 
bc20327
32b570e
57237e8
ce7a615
a6abdc9
0f8ec45
 
909646e
f86e5bd
928f3b9
0f8ec45
afeabee
5f9e180
dd6d711
a6abdc9
afeabee
 
cd0a2d9
25be712
bbeb5e2
d035873
7921b80
236f936
cd0a2d9
 
 
236f936
 
 
60c673a
 
afeabee
dd6d711
a6abdc9
dd6d711
a1bd179
 
 
 
f86e5bd
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
fb3409b
f86e5bd
fb3409b
f86e5bd
 
 
 
60c673a
0f8ec45
6027158
ed2d2b6
2656341
0f8ec45
 
 
50098a7
 
 
 
 
 
 
 
 
 
0a795c5
bf4a496
 
 
 
0f8ec45
 
 
a26a344
0f8ec45
 
 
 
 
8f1a540
cf80990
8f1a540
 
cf80990
c1d1b49
1332b31
8f1a540
 
 
cf80990
1332b31
 
8f1a540
 
 
cf80990
1332b31
 
8f1a540
 
 
2d30d63
bf4a496
8f1a540
 
 
1332b31
8f1a540
 
3ef4373
 
 
 
 
8f1a540
 
928f3b9
9b50823
0f8ec45
909646e
 
a6abdc9
 
9061f6a
f86e5bd
1a36e0e
0f8ec45
5f9e180
0f8ec45
 
a6abdc9
e8e4ed0
57237e8
a6abdc9
 
909646e
a6abdc9
 
3ef4373
909646e
a6abdc9
 
 
 
52d72c6
3ef4373
e8e4ed0
8f1a540
cf80990
8f1a540
 
 
cd04efe
8f1a540
 
57237e8
5079df0
0f8ec45
5079df0
6aef7b0
 
2d30d63
 
 
 
0f8ec45
 
 
 
909646e
1a36e0e
0f8ec45
 
 
e91ae6b
 
a26a344
f86e5bd
0f8ec45
 
d72df82
 
0f8ec45
 
17b0567
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
from __future__ import annotations
import math
import random
import spaces
import gradio as gr
import numpy as np
import torch
from PIL import Image
from diffusers import StableDiffusionXLImg2ImgPipeline, StableDiffusionXLPipeline, EDMEulerScheduler, StableDiffusionXLInstructPix2PixPipeline, AutoencoderKL, DPMSolverMultistepScheduler
from huggingface_hub import hf_hub_download, InferenceClient

vae = AutoencoderKL.from_pretrained("madebyollin/sdxl-vae-fp16-fix", torch_dtype=torch.float16)
pipe = StableDiffusionXLPipeline.from_pretrained("SG161222/RealVisXL_V4.0", torch_dtype=torch.float16, vae=vae)
pipe.scheduler = DPMSolverMultistepScheduler.from_config(pipe.scheduler.config, use_karras_sigmas=True, algorithm_type="sde-dpmsolver++")
pipe.to("cuda")

refiner = StableDiffusionXLImg2ImgPipeline.from_pretrained("stabilityai/stable-diffusion-xl-refiner-1.0", vae=vae, torch_dtype=torch.float16, use_safetensors=True, variant="fp16")
refiner.to("cuda")

pipe_fast = StableDiffusionXLPipeline.from_pretrained("SG161222/RealVisXL_V4.0_Lightning", torch_dtype=torch.float16, vae=vae, use_safetensors=True)
pipe_fast.to("cuda")

help_text = """
To optimize image results:
- Adjust the **Image CFG weight** if the image isn't changing enough or is changing too much. Lower it to allow bigger changes, or raise it to preserve original details.
- Modify the **Text CFG weight** to influence how closely the edit follows text instructions. Increase it to adhere more to the text, or decrease it for subtler changes.
- Experiment with different **random seeds** and **CFG values** for varied outcomes.
- **Rephrase your instructions** for potentially better results.
- **Increase the number of steps** for enhanced edits.
"""

def set_timesteps_patched(self, num_inference_steps: int, device = None):
    self.num_inference_steps = num_inference_steps
    
    ramp = np.linspace(0, 1, self.num_inference_steps)
    sigmas = torch.linspace(math.log(self.config.sigma_min), math.log(self.config.sigma_max), len(ramp)).exp().flip(0)
    
    sigmas = (sigmas).to(dtype=torch.float32, device=device)
    self.timesteps = self.precondition_noise(sigmas)
    
    self.sigmas = torch.cat([sigmas, torch.zeros(1, device=sigmas.device)])
    self._step_index = None
    self._begin_index = None
    self.sigmas = self.sigmas.to("cpu") 

# Image Editor
edit_file = hf_hub_download(repo_id="stabilityai/cosxl", filename="cosxl_edit.safetensors")
EDMEulerScheduler.set_timesteps = set_timesteps_patched
pipe_edit = StableDiffusionXLInstructPix2PixPipeline.from_single_file( edit_file, num_in_channels=8, is_cosxl_edit=True, vae=vae, torch_dtype=torch.float16 )
pipe_edit.scheduler = EDMEulerScheduler(sigma_min=0.002, sigma_max=120.0, sigma_data=1.0, prediction_type="v_prediction")
pipe_edit.to("cuda")

client1 = InferenceClient("HuggingFaceH4/zephyr-7b-beta")
system_instructions1 = "<|system|>\nAct as Image Prompt Generation expert, Your task is to modify prompt by USER to more better prompt for Image Generation in Stable Diffusion XL. \n Modify the user's prompt to generate a high-quality image by incorporating essential keywords and styles according to prompt if none style is mentioned than assume realistic. The optimized prompt may include keywords according to prompt for resolution (4K, HD, 16:9 aspect ratio, , etc.), image quality (cute, masterpiece, high-quality, vivid colors, intricate details, etc.), and desired art styles (realistic, anime, 3D, logo, futuristic, fantasy, etc.). Ensure the prompt is concise, yet comprehensive and choose keywords wisely, to generate an exceptional image that meets the user's expectations. \n Your task is to reply with final optimized prompt only. If you get big prompt make it concise. and Apply all keyword at last of prompt. Reply with optimized prompt only.\n<|user|>\n"

def promptifier(prompt):
    formatted_prompt = f"{system_instructions1}{prompt}\n<|assistant|>\n"
    stream = client1.text_generation(formatted_prompt, max_new_tokens=100)
    return stream

# Generator
@spaces.GPU(duration=60, queue=False)
def king(type ,
        input_image ,
        instruction: str ,
        negative_prompt: str ="",
        enhance_prompt: bool = True,
        steps: int = 25,
        randomize_seed: bool = True,
        seed: int = 2404,
        width: int = 1024,
        height: int = 1024,
        guidance_scale: float = 6,
        fast=True,
        progress=gr.Progress(track_tqdm=True)
    ):
    if type=="Image Editing" :
        input_image = Image.open(input_image).convert('RGB')
        if randomize_seed:
            seed = random.randint(0, 999999)
        generator = torch.manual_seed(seed)
        output_image = pipe_edit(
            instruction, negative_prompt=negative_prompt, image=input_image,
            guidance_scale=guidance_scale, image_guidance_scale=1.5,
            width = input_image.width, height = input_image.height,
            num_inference_steps=steps, generator=generator, output_type="latent",
        ).images
        refine = refiner(
            prompt=f"{instruction}, 4k, hd, high quality, masterpiece",
            negative_prompt = negative_prompt,
            guidance_scale=7.5,
            num_inference_steps=steps,
            image=output_image,
            generator=generator,
        ).images[0]  
        return seed, refine
    else :
        if randomize_seed:
            seed = random.randint(0, 999999)
        generator = torch.Generator().manual_seed(seed)
        if enhance_prompt:
            print(f"BEFORE: {instruction} ")
            instruction = promptifier(instruction)
            print(f"AFTER: {instruction} ")
        guidance_scale2=(guidance_scale/2)
        if fast:
            refine = pipe_fast(prompt = instruction,
            guidance_scale = guidance_scale2, 
            num_inference_steps = int(steps/2.5),
            width = width, height = height,
            generator = generator,
            ).images[0]
        else:            
            image = pipe_fast( prompt = instruction,
            negative_prompt=negative_prompt,
            guidance_scale = guidance_scale, 
            num_inference_steps = steps, 
            width = width, height = height,
            generator = generator, output_type="latent",
            ).images 

            refine = refiner( prompt=instruction,
                    negative_prompt = negative_prompt,
                    guidance_scale = 7.5,
                    num_inference_steps=  steps,
                    image=image, generator=generator,
            ).images[0]        
        return seed, refine

client = InferenceClient()
# Prompt classifier
def response(instruction, input_image=None ):
    if input_image is None:
        output="Image Generation"
    else:
        try:
            text = instruction
            labels = ["Image Editing", "Image Generation"]
            classification = client.zero_shot_classification(text, labels, multi_label=True)
            output = classification[0]
            output = str(output)
            if "Editing" in output:
                output = "Image Editing"
            else:
                output = "Image Generation"
        except:
            if input_image is None:
                output="Image Generation"
            else:
                output="Image Editing"
    return output

css = '''
.gradio-container{max-width: 700px !important}
h1{text-align:center}
footer {
    visibility: hidden
}
'''

examples=[
        [
            "Image Generation",
            None,
            "A luxurious supercar with a unique design. The car should have a pearl white finish, and gold accents. 4k, realistic.",

        ],
        [
            "Image Editing",
            "./supercar.png",
            "make it red",

        ],
        [
            "Image Editing",
            "./red_car.png",
            "add some snow",

        ],
        [
            "Image Generation",
            None,
            "An alien grasping a sign board contain word 'ALIEN' with Neon Glow, neon, futuristic, neonpunk, neon lights",
        ],
        [
            "Image Generation",
            None,
            "Beautiful Eiffel Tower at Night",
        ],
        [
            "Image Generation",
            None,
            "Beautiful Eiffel Tower at Night",
        ],
    ]

with gr.Blocks(css=css) as demo:
    gr.Markdown("# Image Generation , Image Editing \n ### Note: First image generation takes time")
    with gr.Row():
        instruction = gr.Textbox(lines=1, label="Instruction", interactive=True)
        generate_button = gr.Button("Run", scale=0)
    with gr.Row():
        type = gr.Dropdown(["Image Generation","Image Editing"], label="Task", value="Image Generation",interactive=True)
        enhance_prompt = gr.Checkbox(label="Enhance prompt", value=False, scale=0)
        fast = gr.Checkbox(label="FAST Generation", value=True, scale=0)
        
    with gr.Row():
        input_image = gr.Image(label="Image", type='filepath', interactive=True)

    with gr.Row():
        guidance_scale = gr.Number(value=6.0, step=0.1, label="Guidance Scale", interactive=True)
        steps = gr.Number(value=25, step=1, label="Steps", interactive=True)

    with gr.Accordion("Advanced options", open=False):
        with gr.Row():
            negative_prompt = gr.Text(
                    label="Negative prompt",
                    max_lines=1,
                    value="(deformed, distorted, disfigured:1.3), poorly drawn, bad anatomy, wrong anatomy, extra limb, missing limb, floating limbs, (mutated hands and fingers:1.4), disconnected limbs, ugly, disgusting, blurry, amputation,(face asymmetry, eyes asymmetry, deformed eyes, open mouth)",
                    visible=True)
        with gr.Row():
            width =  gr.Slider( label="Width", minimum=256, maximum=2048, step=64, value=1024)
            height =  gr.Slider( label="Height", minimum=256, maximum=2048, step=64, value=1024)
        with gr.Row():
            randomize_seed = gr.Checkbox(label="Randomize Seed", value = True, interactive=True )
            seed = gr.Number(value=2404, step=1, label="Seed", interactive=True)

    gr.Examples(
        examples=examples,
        inputs=[type,input_image, instruction],
        fn=king,
        outputs=[input_image],
        cache_examples=False,
    )

    # gr.Markdown(help_text)

    instruction.change(fn=response, inputs=[instruction,input_image], outputs=type, queue=False)

    input_image.upload(fn=response, inputs=[instruction,input_image], outputs=type, queue=False)
    
    gr.on(triggers=[
            generate_button.click,
            instruction.submit
        ],
            fn=king,
            inputs=[type,
                input_image,
                instruction,
                negative_prompt,
                enhance_prompt,
                steps,
                randomize_seed,
                seed,
                width,
                height,
                guidance_scale,
                fast,
            ],
            outputs=[seed, input_image],
          api_name = "image_gen_pro",
          queue=False
        )

demo.queue(max_size=500).launch()