import os import random import uuid import json import gradio as gr import numpy as np from PIL import Image import spaces import torch from diffusers import DiffusionPipeline DESCRIPTION = """# SDXL Flash""" if not torch.cuda.is_available(): DESCRIPTION += "\n
Running on CPU 🥶 This demo may not work on CPU.
" MAX_SEED = np.iinfo(np.int32).max CACHE_EXAMPLES = torch.cuda.is_available() and os.getenv("CACHE_EXAMPLES", "0") == "1" MAX_IMAGE_SIZE = int(os.getenv("MAX_IMAGE_SIZE", "4096")) USE_TORCH_COMPILE = os.getenv("USE_TORCH_COMPILE", "0") == "1" ENABLE_CPU_OFFLOAD = os.getenv("ENABLE_CPU_OFFLOAD", "0") == "1" device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu") NUM_IMAGES_PER_PROMPT = 1 if torch.cuda.is_available(): pipe = DiffusionPipeline.from_pretrained( "sd-community/sdxl-flash", torch_dtype=torch.float16, use_safetensors=True, add_watermarker=False, variant="fp16" ) if ENABLE_CPU_OFFLOAD: pipe.enable_model_cpu_offload() else: pipe.to(device) print("Loaded on Device!") if USE_TORCH_COMPILE: pipe.unet = torch.compile(pipe.unet, mode="reduce-overhead", fullgraph=True) pipe2.unet = torch.compile(pipe2.unet, mode="reduce-overhead", fullgraph=True) print("Model Compiled!") def save_image(img): unique_name = str(uuid.uuid4()) + ".png" img.save(unique_name) return unique_name def randomize_seed_fn(seed: int, randomize_seed: bool) -> int: if randomize_seed: seed = random.randint(0, MAX_SEED) return seed @spaces.GPU(enable_queue=False) def generate( prompt: str, negative_prompt: str = "", use_negative_prompt: bool = False, seed: int = 0, width: int = 1024, height: int = 1024, guidance_scale: float = 3, num_inference_steps: int = 9, randomize_seed: bool = False, use_resolution_binning: bool = True, progress=gr.Progress(track_tqdm=True), ): pipe.to(device) seed = int(randomize_seed_fn(seed, randomize_seed)) generator = torch.Generator().manual_seed(seed) if not use_negative_prompt: negative_prompt = "" # type: ignore negative_prompt += default_negative options = { "prompt":prompt, "negative_prompt":negative_prompt, "width":width, "height":height, "guidance_scale":guidance_scale, "num_inference_steps":num_inference_steps, "generator":generator, "num_images_per_prompt":NUM_IMAGES_PER_PROMPT, "use_resolution_binning":use_resolution_binning, "output_type":"pil", } images = pipe(**options).images image_paths = [save_image(img) for img in images] return image_paths, seed examples = [ "neon holography crystal cat", "a cat eating a piece of cheese", "an astronaut riding a horse in space", "a cartoon of a boy playing with a tiger", "a cute robot artist painting on an easel, concept art", #"a close up of a woman wearing a transparent, prismatic, elaborate nemeses headdress, over the should pose, brown skin-tone" ] css = ''' .gradio-container{max-width: 560px !important} h1{text-align:center} ''' with gr.Blocks(css=css) as demo: gr.Markdown(DESCRIPTION) with gr.Group(): with gr.Row(): prompt = gr.Text( label="Prompt", show_label=False, max_lines=1, placeholder="Enter your prompt", container=False, ) run_button = gr.Button("Run", scale=0) result = gr.Gallery(label="Result", columns=NUM_IMAGES_PER_PROMPT, show_label=False) with gr.Accordion("Advanced options", open=False): with gr.Row(): use_negative_prompt = gr.Checkbox(label="Use negative prompt", value=True) negative_prompt = gr.Text( label="Negative prompt", max_lines=1, placeholder="Enter a negative prompt", value="(deformed, distorted, disfigured:1.3), poorly drawn, bad anatomy, wrong anatomy, extra limb, missing limb, floating limbs, (mutated hands and fingers:1.4), disconnected limbs, mutation, mutated, ugly, disgusting, blurry, amputation, NSFW", visible=True, ) seed = gr.Slider( label="Seed", minimum=0, maximum=MAX_SEED, step=1, value=0, ) randomize_seed = gr.Checkbox(label="Randomize seed", value=True) with gr.Row(visible=True): width = gr.Slider( label="Width", minimum=256, maximum=MAX_IMAGE_SIZE, step=32, value=1024, ) height = gr.Slider( label="Height", minimum=256, maximum=MAX_IMAGE_SIZE, step=32, value=1024, ) with gr.Row(): guidance_scale = gr.Slider( label="Guidance Scale", minimum=0.1, maximum=6, step=0.1, value=3.0, ) num_inference_steps = gr.Slider( label="Number of inference steps", minimum=1, maximum=15, step=1, value=5, ) gr.Examples( examples=examples, inputs=prompt, outputs=[result, seed], fn=generate, cache_examples=CACHE_EXAMPLES, ) use_negative_prompt.change( fn=lambda x: gr.update(visible=x), inputs=use_negative_prompt, outputs=negative_prompt, api_name=False, ) gr.on( triggers=[ prompt.submit, negative_prompt.submit, run_button.click, ], fn=generate, inputs=[ prompt, negative_prompt, use_negative_prompt, seed, width, height, guidance_scale, num_inference_steps, randomize_seed, ], outputs=[result, seed], api_name="run", ) if __name__ == "__main__": demo.queue(max_size=20).launch()