print("Starting up. Please be patient...") import os import glob import json import traceback import logging import gradio as gr import numpy as np import librosa import torch import asyncio import edge_tts import yt_dlp import ffmpeg import subprocess import sys import io import wave from datetime import datetime from fairseq import checkpoint_utils from lib.infer_pack.models import ( SynthesizerTrnMs256NSFsid, SynthesizerTrnMs256NSFsid_nono, SynthesizerTrnMs768NSFsid, SynthesizerTrnMs768NSFsid_nono, ) from vc_infer_pipeline import VC from config import Config from edgetts_db import tts_order_voice #fuck intel os.environ["KMP_DUPLICATE_LIB_OK"]="TRUE" config = Config() logging.getLogger("numba").setLevel(logging.WARNING) limitation = os.getenv("SYSTEM") == "spaces" #limitation=True language_dict = tts_order_voice authors = ["dacoolkid44", "Hijack", "Maki Ligon", "megaaziib", "Kit Lemonfoot", "yeey5", "Sui", "MahdeenSky"] f0method_mode = [] if limitation is True: f0method_info = "PM is better for testing, RMVPE is better for finalized generations. (Default: PM)" f0method_mode = ["pm", "rmvpe"] else: f0method_info = "PM is fast but low quality, crepe and harvest are slow but good quality, RMVPE is the best of both worlds. (Default: PM)" f0method_mode = ["pm", "crepe", "harvest", "rmvpe"] #Eagerload VCs print("Preloading VCs...") vcArr=[] vcArr.append(VC(32000, config)) vcArr.append(VC(40000, config)) vcArr.append(VC(48000, config)) def infer(name, path, index, vc_input, vc_upload, tts_text, tts_voice, f0_up_key, f0_method, index_rate, filter_radius, resample_sr, rms_mix_rate, protect): try: #Setup audio audio=None #Determine audio mode #TTS takes priority over uploads. #Uploads takes priority over paths. vc_audio_mode = "" #Edge-TTS if(tts_text): vc_audio_mode = "ETTS" if len(tts_text) > 250 and limitation: return "Text is too long.", None if tts_text is None or tts_voice is None or tts_text=="": return "You need to enter text and select a voice.", None voice = language_dict[tts_voice] try: asyncio.run(edge_tts.Communicate(tts_text, voice).save("tts.mp3")) except: print("Failed to get E-TTS handle. A restart may be needed soon.") return "ERROR: Failed to communicate with Edge-TTS. The Edge-TTS service may be down or cannot communicate. Please try another method or try again later.", None try: audio, sr = librosa.load("tts.mp3", sr=16000, mono=True) except: return "ERROR: Invalid characters for the chosen TTS speaker. (Change your TTS speaker to one that supports your language!)", None duration = audio.shape[0] / sr if duration > 30 and limitation: return "Your text generated an audio that was too long.", None vc_input = "tts.mp3" #File upload elif(vc_upload): vc_audio_mode = "Upload" sampling_rate, audio = vc_upload duration = audio.shape[0] / sampling_rate if duration > 60 and limitation: return "Too long! Please upload an audio file that is less than 1 minute.", None audio = (audio / np.iinfo(audio.dtype).max).astype(np.float32) if len(audio.shape) > 1: audio = librosa.to_mono(audio.transpose(1, 0)) if sampling_rate != 16000: audio = librosa.resample(audio, orig_sr=sampling_rate, target_sr=16000) tts_text = "Uploaded Audio" #YouTube or path elif(vc_input): audio, sr = librosa.load(vc_input, sr=16000, mono=True) vc_audio_mode = "YouTube" tts_text = "YouTube Audio" else: return "Please upload or choose some type of audio.", None if audio is None: if vc_audio_mode == "ETTS": print("Failed to get E-TTS handle. A restart may be needed soon.") return "ERROR: Failed to obtain a correct response from Edge-TTS. The Edge-TTS service may be down or unable to communicate. Please try another method or try again later.", None return "ERROR: Unknown audio error. Please try again.", None times = [0, 0, 0] f0_up_key = int(f0_up_key) print(config.device) #Setup model cpt = torch.load(f"{path}", map_location="cpu") tgt_sr = cpt["config"][-1] cpt["config"][-3] = cpt["weight"]["emb_g.weight"].shape[0] # n_spk if_f0 = cpt.get("f0", 1) version = cpt.get("version", "v1") if version == "v1": if if_f0 == 1: net_g = SynthesizerTrnMs256NSFsid(*cpt["config"], is_half=config.is_half) else: net_g = SynthesizerTrnMs256NSFsid_nono(*cpt["config"]) model_version = "V1" elif version == "v2": if if_f0 == 1: net_g = SynthesizerTrnMs768NSFsid(*cpt["config"], is_half=config.is_half) else: net_g = SynthesizerTrnMs768NSFsid_nono(*cpt["config"]) model_version = "V2" del net_g.enc_q print(net_g.load_state_dict(cpt["weight"], strict=False)) net_g.eval().to(config.device) if config.is_half: net_g = net_g.half() else: net_g = net_g.float() vcIdx = int((tgt_sr/8000)-4) #Gen audio audio_opt = vcArr[vcIdx].pipeline( hubert_model, net_g, 0, audio, vc_input, times, f0_up_key, f0_method, index, # file_big_npy, index_rate, if_f0, filter_radius, tgt_sr, resample_sr, rms_mix_rate, version, protect, f0_file=None, ) info = f"[{datetime.now().strftime('%Y-%m-%d %H:%M')}]: npy: {times[0]}, f0: {times[1]}s, infer: {times[2]}s" print(f"Successful inference with model {name} | {tts_text} | {info}") del net_g, cpt return info, (tgt_sr, audio_opt) except: info = traceback.format_exc() print(info) return info, (None, None) def load_model(): categories = [] with open("weights/folder_info.json", "r", encoding="utf-8") as f: folder_info = json.load(f) for category_name, category_info in folder_info.items(): if not category_info['enable']: continue category_title = category_info['title'] category_folder = category_info['folder_path'] models = [] print(f"Creating category {category_title}...") with open(f"weights/{category_folder}/model_info.json", "r", encoding="utf-8") as f: models_info = json.load(f) for character_name, info in models_info.items(): if not info['enable']: continue model_title = info['title'] model_name = info['model_path'] model_author = info.get("author", None) model_cover = f"weights/{category_folder}/{character_name}/{info['cover']}" model_index = f"weights/{category_folder}/{character_name}/{info['feature_retrieval_library']}" if info['feature_retrieval_library'] == "None": model_index = None if model_index: assert os.path.exists(model_index), f"Model {model_title} failed to load index." if not (model_author in authors or "/" in model_author or "&" in model_author): authors.append(model_author) model_path = f"weights/{category_folder}/{character_name}/{model_name}" cpt = torch.load(f"weights/{category_folder}/{character_name}/{model_name}", map_location="cpu") model_version = cpt.get("version", "v1") print(f"Indexed model {model_title} by {model_author} ({model_version})") models.append((character_name, model_title, model_author, model_cover, model_version, model_path, model_index)) del cpt categories.append([category_title, category_folder, models]) return categories def cut_vocal_and_inst(url, audio_provider, split_model): if url != "": if not os.path.exists("dl_audio"): os.mkdir("dl_audio") if audio_provider == "Youtube": ydl_opts = { 'format': 'bestaudio/best', 'postprocessors': [{ 'key': 'FFmpegExtractAudio', 'preferredcodec': 'wav', }], "outtmpl": 'dl_audio/youtube_audio', } with yt_dlp.YoutubeDL(ydl_opts) as ydl: ydl.download([url]) audio_path = "dl_audio/youtube_audio.wav" else: # Spotify doesnt work. # Need to find other solution soon. ''' command = f"spotdl download {url} --output dl_audio/.wav" result = subprocess.run(command.split(), stdout=subprocess.PIPE) print(result.stdout.decode()) audio_path = "dl_audio/spotify_audio.wav" ''' if split_model == "htdemucs": command = f"demucs --two-stems=vocals {audio_path} -o output" result = subprocess.run(command.split(), stdout=subprocess.PIPE) print(result.stdout.decode()) return "output/htdemucs/youtube_audio/vocals.wav", "output/htdemucs/youtube_audio/no_vocals.wav", audio_path, "output/htdemucs/youtube_audio/vocals.wav" else: command = f"demucs --two-stems=vocals -n mdx_extra_q {audio_path} -o output" result = subprocess.run(command.split(), stdout=subprocess.PIPE) print(result.stdout.decode()) return "output/mdx_extra_q/youtube_audio/vocals.wav", "output/mdx_extra_q/youtube_audio/no_vocals.wav", audio_path, "output/mdx_extra_q/youtube_audio/vocals.wav" else: raise gr.Error("URL Required!") return None, None, None, None def load_hubert(): global hubert_model models, _, _ = checkpoint_utils.load_model_ensemble_and_task( ["hubert_base.pt"], suffix="", ) hubert_model = models[0] hubert_model = hubert_model.to(config.device) if config.is_half: hubert_model = hubert_model.half() else: hubert_model = hubert_model.float() hubert_model.eval() if __name__ == '__main__': load_hubert() categories = load_model() voices = list(language_dict.keys()) # Gradio preloading # Input and Upload vc_upload = gr.Audio(label="Upload or record an audio file", interactive=True) # Youtube vc_input = gr.Textbox(label="Input audio path", visible=False) vc_download_audio = gr.Dropdown(label="Provider", choices=["Youtube"], allow_custom_value=False, value="Youtube", info="Select provider (Default: Youtube)") vc_link = gr.Textbox(label="Youtube URL", info="Example: https://www.youtube.com/watch?v=Nc0sB1Bmf-A", placeholder="https://www.youtube.com/watch?v=...") vc_split_model = gr.Dropdown(label="Splitter Model", choices=["htdemucs", "mdx_extra_q"], allow_custom_value=False, value="htdemucs", info="Select the splitter model (Default: htdemucs)") vc_split = gr.Button("Split Audio", variant="primary") vc_vocal_preview = gr.Audio(label="Vocal Preview") vc_inst_preview = gr.Audio(label="Instrumental Preview") vc_audio_preview = gr.Audio(label="Audio Preview") # TTS tts_text = gr.Textbox(label="TTS text", info="Text to speech input (There is a limit of 250 characters)", interactive=True) tts_voice = gr.Dropdown(label="Edge-TTS speaker", choices=voices, allow_custom_value=False, value="English-Ana (Female)", interactive=True) # Other settings vc_transform0 = gr.Number(label="Transpose", value=0, info='Type "12" to change from male to female voice. Type "-12" to change female to male voice') f0method0 = gr.Radio( label="Pitch extraction algorithm", info=f0method_info, choices=f0method_mode, value="pm", interactive=True ) index_rate1 = gr.Slider( minimum=0, maximum=1, label="Retrieval feature ratio", info="Accent control. Too high will usually sound too robotic. (Default: 0.4)", value=0.4, interactive=True, ) filter_radius0 = gr.Slider( minimum=0, maximum=7, label="Apply Median Filtering", info="The value represents the filter radius and can reduce breathiness.", value=1, step=1, interactive=True, ) resample_sr0 = gr.Slider( minimum=0, maximum=48000, label="Resample the output audio", info="Resample the output audio in post-processing to the final sample rate. Set to 0 for no resampling.", value=0, step=1, interactive=True, ) rms_mix_rate0 = gr.Slider( minimum=0, maximum=1, label="Volume Envelope", info="Use the volume envelope of the input to replace or mix with the volume envelope of the output. The closer the ratio is to 1, the more the output envelope is used", value=1, interactive=True, ) protect0 = gr.Slider( minimum=0, maximum=0.5, label="Voice Protection", info="Protect voiceless consonants and breath sounds to prevent artifacts such as tearing in electronic music. Set to 0.5 to disable. Decrease the value to increase protection, but it may reduce indexing accuracy", value=0.23, step=0.01, interactive=True, ) with gr.Blocks(theme=gr.themes.Base()) as app: gr.Markdown( "#
VTuber RVC Models\n" "###
Space by Kit Lemonfoot / Noel Shirogane's High Flying Birds" "
Original space by megaaziib & zomehwh\n" "###
Please credit the original model authors if you use this Space." "
Do no evil.\n\n" "[![image](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/drive/1Til3SY7-X0x3Wss3YXlgfq8go39DzWHk)\n\n" ) gr.Markdown("
Looking for more models? Check out the VTuber AI Model Tracking spreadsheet!") for (folder_title, folder, models) in categories: with gr.TabItem(folder_title): with gr.Tabs(): if not models: gr.Markdown("#
No Model Loaded.") gr.Markdown("##
Please add model or fix your model path.") continue for (name, title, author, cover, model_version, model_path, model_index) in models: with gr.TabItem(name): with gr.Row(): with gr.Column(): gr.Markdown( '
' f'
{title}
\n'+ f'
RVC {model_version} Model
\n'+ (f'
Model author: {author}
' if author else "")+ (f'' if cover else "")+ '
' ) with gr.Column(): vc_log = gr.Textbox(label="Output Information", interactive=False) vc_output = gr.Audio(label="Output Audio", interactive=False) #This is a fucking stupid solution but Gradio refuses to pass in values unless I do this. vc_name = gr.Textbox(value=title, visible=False, interactive=False) vc_mp = gr.Textbox(value=model_path, visible=False, interactive=False) vc_mi = gr.Textbox(value=model_index, visible=False, interactive=False) vc_convert = gr.Button("Convert", variant="primary") vc_convert.click( fn=infer, inputs=[ vc_name, vc_mp, vc_mi, vc_input, vc_upload, tts_text, tts_voice, vc_transform0, f0method0, index_rate1, filter_radius0, resample_sr0, rms_mix_rate0, protect0 ], outputs=[vc_log, vc_output] ) with gr.Row(): with gr.Column(): with gr.Tab("Edge-TTS"): tts_text.render() tts_voice.render() with gr.Tab("Upload/Record"): vc_input.render() vc_upload.render() if(not limitation): with gr.Tab("YouTube"): vc_download_audio.render() vc_link.render() vc_split_model.render() vc_split.render() vc_vocal_preview.render() vc_inst_preview.render() vc_audio_preview.render() with gr.Column(): vc_transform0.render() f0method0.render() index_rate1.render() with gr.Accordion("Advanced Options", open=False): filter_radius0.render() resample_sr0.render() rms_mix_rate0.render() protect0.render() vc_split.click( fn=cut_vocal_and_inst, inputs=[vc_link, vc_download_audio, vc_split_model], outputs=[vc_vocal_preview, vc_inst_preview, vc_audio_preview, vc_input] ) authStr=", ".join(authors) gr.Markdown( "##
Credit to:\n" "####
Original devs:\n" "
the RVC Project, lj1995, zomehwh, sysf\n\n" "####
Model creators:\n" f"
{authStr}\n" ) if limitation is True: app.queue(max_size=20, api_open=config.api).launch(allowed_paths=["/"]) else: app.queue(max_size=20, api_open=config.api).launch(allowed_paths=["/"], share=False)