Spaces:
Running
Running
import torch | |
from diffusers import StableDiffusionPipeline, DDIMScheduler, AutoencoderKL | |
from PIL import Image | |
from ip_adapter.ip_adapter_faceid import IPAdapterFaceIDPlus | |
import cv2 | |
from insightface.app import FaceAnalysis | |
from insightface.utils import face_align | |
base_model_path = "SG161222/Realistic_Vision_V4.0_noVAE" | |
vae_model_path = "stabilityai/sd-vae-ft-mse" | |
#image_encoder_path = "h94/IP-Adapter/models/image_encoder" | |
image_encoder_path = "image_encoder" | |
ip_ckpt = "IP-Adapter-FaceID/ip-adapter-faceid-plus_sd15.bin" | |
if torch.cuda.is_available(): | |
device = 'cuda' | |
torch_dtype = torch.float16 | |
else: | |
device = 'cpu' | |
torch_dtype = torch.float32 | |
print(f'Using device: {device}') | |
noise_scheduler = DDIMScheduler( | |
num_train_timesteps=1000, | |
beta_start=0.00085, | |
beta_end=0.012, | |
beta_schedule="scaled_linear", | |
clip_sample=False, | |
set_alpha_to_one=False, | |
steps_offset=1, | |
) | |
vae = AutoencoderKL.from_pretrained(vae_model_path).to(dtype=torch_dtype) | |
pipe = StableDiffusionPipeline.from_pretrained( | |
base_model_path, | |
torch_dtype=torch_dtype, | |
scheduler=noise_scheduler, | |
vae=vae, | |
feature_extractor=None, | |
safety_checker=None | |
) | |
ip_model = IPAdapterFaceIDPlus(pipe, image_encoder_path, ip_ckpt, device, num_tokens=4, torch_dtype=torch_dtype) | |
app = FaceAnalysis(name="buffalo_l", providers=['CUDAExecutionProvider', 'CPUExecutionProvider']) | |
app.prepare(ctx_id=0, det_size=(640, 640), det_thresh=0.2) | |
def generate_images(img_filepath, prompt, n_images=3, | |
negative_prompt="monochrome, lowres, bad anatomy, worst quality, low quality, blurry", | |
img_prompt_scale=0.5, | |
num_inference_steps=30, | |
seed=None): | |
print(prompt) | |
image = cv2.imread(img_filepath) | |
faces = app.get(image) | |
faceid_embeds = torch.from_numpy(faces[0].normed_embedding).unsqueeze(0) | |
face_image = face_align.norm_crop(image, landmark=faces[0].kps, image_size=224) # you can also segment the face | |
images = ip_model.generate( | |
prompt=prompt, negative_prompt=negative_prompt, face_image=face_image, faceid_embeds=faceid_embeds, | |
num_samples=n_images, width=512, height=512, num_inference_steps=num_inference_steps, seed=seed, | |
scale=img_prompt_scale, # with scale=1 I get weird images | |
) | |
return [images, Image.fromarray(face_image[..., [2, 1, 0]])] | |
import gradio as gr | |
with gr.Blocks() as demo: | |
gr.Markdown( | |
""" | |
# IP-Adapter-FaceID-plus | |
Generate images conditioned on a image prompt and a text prompt. Learn more here: https://huggingface.co/h94/IP-Adapter-FaceID | |
""") | |
with gr.Row(): | |
with gr.Column(): | |
demo_inputs = [] | |
demo_inputs.append(gr.Image(type='filepath', label='image prompt')) | |
demo_inputs.append(gr.Textbox(label='text prompt', value='headshot of a man, green moss wall in the background')) | |
demo_inputs.append(gr.Slider(maximum=3, minimum=1, value=3, step=1, label='number of images')) | |
with gr.Accordion(label='Advanced options', open=False): | |
demo_inputs.append(gr.Textbox(label='negative text prompt', value="monochrome, lowres, bad anatomy, worst quality, low quality, blurry")) | |
demo_inputs.append(gr.Slider(maximum=1, minimum=0, value=0.5, step=0.05, label='image prompt scale')) | |
btn = gr.Button("Generate") | |
with gr.Column(): | |
demo_outputs = [] | |
demo_outputs.append(gr.Gallery(label='generated images')) | |
demo_outputs.append(gr.Image(label='detected face', height=224, width=224)) | |
btn.click(generate_images, inputs=demo_inputs, outputs=demo_outputs) | |
sample_prompts = [ | |
'headshot of a man, green moss wall in the background', | |
'linkedin profile picture of a macdonalds worker', | |
'LinkedIn profile picture of a beautiful man dressed in a suit, huge explosion in the background', | |
] | |
gr.Examples(sample_prompts, inputs=demo_inputs[1], label='Sample prompts') | |
demo.launch(share=True, debug=True) |