File size: 3,932 Bytes
6b551f5
4a394a0
534a595
f6bcba8
 
00e8ae0
f6bcba8
fe7da9a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a293aa3
a48afe6
6b551f5
4a394a0
fe7da9a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6b551f5
9310588
4a394a0
9310588
6b551f5
fe7da9a
6b551f5
 
fe7da9a
6b551f5
 
fe7da9a
6b551f5
 
4a394a0
6b551f5
 
4a394a0
6b551f5
a293aa3
fe7da9a
ddc0a5b
a293aa3
6b551f5
fe7da9a
 
 
 
 
 
 
 
 
 
6b551f5
 
f6bcba8
87823a5
a48afe6
f6bcba8
 
6b551f5
 
 
 
f6bcba8
 
6b551f5
 
 
 
f6bcba8
a293aa3
 
 
 
 
 
 
 
 
 
 
 
 
 
6b551f5
 
f6bcba8
6b551f5
 
f6bcba8
6b551f5
f6bcba8
a293aa3
 
 
 
 
6b551f5
f6bcba8
 
87823a5
534a595
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
# %%
from jinja2 import Environment, FileSystemLoader
import pandas as pd
import gradio as gr

df = pd.read_csv("./data.csv")


def parse_into_jinja_markdown(
    model_name,
    performance,
    accuracy,
    Precision,
    Recall,
    Robustness,
    Fairness,
    Failure_Clusters,
):
    env = Environment(loader=FileSystemLoader("."), autoescape=True)
    temp = env.get_template("mc_template.md")
    return temp.render(
        model_id=model_name,
        accuracy=accuracy,
        Precision=Precision,
        Recall=Recall,
        Robustness=Robustness,
        Fairness=Fairness,
        Performance=performance,
        Failure_Cluster=Failure_Clusters,
    )


def md_builder(model, dataset, displayed_metrics):
    row = df[df["friendly_name"] == model]
    str = ""
    ## f"# <span style='font-size: 16px;'> Model Card for <code style='font-weight: 400'>{model}</code></span>\n"
    ##f"On dataset `{dataset}`\n"

    ## )

    # init vars to empty string
    (
        perform_val,
        accuracy_val,
        precision_val,
        recall_val,
        robustness_val,
        fairness_val,
        fail_cluster,
    ) = ("", "", "", "", "", "", "")

    if "Performance" in displayed_metrics:
        perform_val = f"\nPerformance: `{row['performance'].values[0]}`"

    if "Accuracy" in displayed_metrics:
        accuracy_val = f"\nAccuracy: `{row['accuracy'].values[0]}`"

    if "Precision" in displayed_metrics:
        precision_val = f"\nPrecision: `{row['precision_weighted'].values[0]}`"

    if "Recall" in displayed_metrics:
        recall_val = f"\nRecall: `{row['recall_weighted'].values[0]}`"

    if "Robustness" in displayed_metrics:
        robustness_val = f"\nRobustness: `{100-row['robustness'].values[0]}`"

    if "Fairness" in displayed_metrics:
        fairness_val = f"\nFairness: `{0}`"

    if "Failure Clusters" in displayed_metrics:
        cl_count = row["cluster_count"].values[0]
        fail_cluster = f"\nTop failures: {row['top_failure_cluster'].values[0]} (+{cl_count - 1} others) (details for all {cl_count} clusters)"

    str += "\n<div style='text-align: right'>⛶ Expand safety card</div>"
    str = parse_into_jinja_markdown(
        model,
        perform_val,
        accuracy_val,
        precision_val,
        recall_val,
        robustness_val,
        fairness_val,
        fail_cluster,
    )
    return str


iface = gr.Interface(
    md_builder,
    [
        gr.Dropdown(
            list(df["friendly_name"]),
            label="Model",
            value="ViT",
            info="Select a model to use for testing.",
        ),
        gr.Dropdown(
            ["marmal88/skin_cancer"],
            value="marmal88/skin_cancer",
            label="Dataset",
            info="Select the sampling dataset to use for testing.",
        ),
        gr.CheckboxGroup(
            [
                "Performance",
                "Accuracy",
                "Precision",
                "Recall",
                "Robustness",
                "Fairness",
                "Failure Clusters",
            ],
            value=["Accuracy", "Robustness", "Fairness", "Failure Clusters"],
            label="Metrics",
            info="Select displayed metrics.",
        ),
        # gr.Radio(["park", "zoo", "road"], label="Location", info="Where did they go?"),
        # gr.Dropdown(
        #    ["ran", "swam", "ate", "slept"], value=["swam", "slept"], multiselect=True, label="Activity", info="Lorem ipsum dolor sit amet, consectetur adipiscing elit. Sed auctor, nisl eget ultricies aliquam, nunc nisl aliquet nunc, eget aliquam nisl nunc vel nisl."
        # ),
        # gr.Checkbox(label="Morning", info="Did they do it in the morning?"),
    ],
    "markdown",
    examples=[
        [
            "ViT",
            "marmal88/skin_cancer",
            ["Accuracy", "Robustness", "Fairness", "Failure Clusters"],
        ],
    ],
)

iface.launch()

# %%