# %%
from jinja2 import Environment, FileSystemLoader
import pandas as pd
import gradio as gr
df = pd.read_csv("./data.csv")
def parse_into_jinja_markdown(model_name, performance,accuracy,Precision, Recall, Robustness, Fairness, Failure_Clusters ):
env = Environment(loader=FileSystemLoader('.'), autoescape=True)
temp = env.get_template('mc_template.md')
return( temp.render(model_id =model_name, accuracy=accuracy,Precision=Precision,Recall=Recall,Robustness=Robustness,Fairness=Fairness,Performance =performance, Failure_Cluster=Failure_Clusters))
def md_builder(model, dataset, displayed_metrics):
row = df[df["friendly_name"] == model]
str = ""
## f"# Model Card for {model}
\n"
##f"On dataset `{dataset}`\n"
## )
if "Performance" in displayed_metrics:
perform_val = f"\nPerformance: `{row['performance'].values[0]}`"
if "Accuracy" in displayed_metrics:
accuracy_val= f"\nAccuracy: `{row['accuracy'].values[0]}`"
if "Precision" in displayed_metrics:
precision_val= f"\nPrecision: `{row['precision_weighted'].values[0]}`"
if "Recall" in displayed_metrics:
recall_val= f"\nRecall: `{row['recall_weighted'].values[0]}`"
if "Robustness" in displayed_metrics:
robustness_val = f"\nRobustness: `{100-row['robustness'].values[0]}`"
if "Fairness" in displayed_metrics:
fairness_val = f"\nFairness: `{0}`"
if "Failure Clusters" in displayed_metrics:
cl_count = row['cluster_count'].values[0]
fail_cluster = f"\nTop failures: {row['top_failure_cluster'].values[0]}(+{cl_count - 1} others)(details for all {cl_count} clusters)"
str += "\n