Lam-Hung commited on
Commit
f5ca5c5
1 Parent(s): 1984cdf

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +197 -197
app.py CHANGED
@@ -1,198 +1,198 @@
1
- import space
2
- import torch
3
- import numpy as np
4
- from transformers import AutoImageProcessor, AutoModelForDepthEstimation
5
- from diffusers import StableDiffusionControlNetPipeline, ControlNetModel, UniPCMultistepScheduler
6
- import natten
7
- import gradio
8
- from PIL import Image
9
-
10
-
11
- """
12
- IMPORT MODEL
13
- """
14
-
15
- #model generate depth image
16
- depth_image_processor = AutoImageProcessor.from_pretrained("LiheYoung/depth-anything-large-hf", torch_dtype=torch.float16)
17
- depth_model = AutoModelForDepthEstimation.from_pretrained("LiheYoung/depth-anything-large-hf", torch_dtype=torch.float16)
18
- depth_model = depth_model.cuda()
19
-
20
- #model generate segment image
21
- from transformers import OneFormerProcessor, OneFormerForUniversalSegmentation
22
-
23
- processor = OneFormerProcessor.from_pretrained("shi-labs/oneformer_ade20k_dinat_large")
24
- model = OneFormerForUniversalSegmentation.from_pretrained("shi-labs/oneformer_ade20k_dinat_large")
25
- model = model.cuda()
26
-
27
- #model generate image
28
-
29
- #load depth controlnet, segmentation controlnet
30
- controlnets = [
31
- ControlNetModel.from_pretrained("Lam-Hung/controlnet_depth_interior", torch_dtype=torch.float16, use_safetensors=True),
32
- ControlNetModel.from_pretrained("Lam-Hung/controlnet_segment_interior", torch_dtype=torch.float16, use_safetensors=True)
33
- ]
34
- #load stable diffusion 1.5 and controlnets
35
- pipeline = StableDiffusionControlNetPipeline.from_pretrained(
36
- "runwayml/stable-diffusion-v1-5", controlnet= controlnets, torch_dtype=torch.float16, use_safetensors=True
37
- )
38
- # take UniPCMultistepScheduler for faster inference
39
- pipeline.scheduler = UniPCMultistepScheduler.from_config(pipeline.scheduler.config)
40
- pipeline.load_lora_weights('Lam-Hung/controlnet_lora_interior', weight_name= "pytorch_lora_weights.safetensors", adapter_name="interior")
41
- pipeline.to("cuda")
42
-
43
-
44
-
45
- """
46
- IMPORT FUNCTION
47
- """
48
- def ade_palette() -> list[list[int]]:
49
- """ADE20K palette that maps each class to RGB values."""
50
- return [[120, 120, 120], [180, 120, 120], [6, 230, 230], [80, 50, 50],
51
- [4, 200, 3], [120, 120, 80], [140, 140, 140], [204, 5, 255],
52
- [230, 230, 230], [4, 250, 7], [224, 5, 255], [235, 255, 7],
53
- [150, 5, 61], [120, 120, 70], [8, 255, 51], [255, 6, 82],
54
- [143, 255, 140], [204, 255, 4], [255, 51, 7], [204, 70, 3],
55
- [0, 102, 200], [61, 230, 250], [255, 6, 51], [11, 102, 255],
56
- [255, 7, 71], [255, 9, 224], [9, 7, 230], [220, 220, 220],
57
- [255, 9, 92], [112, 9, 255], [8, 255, 214], [7, 255, 224],
58
- [255, 184, 6], [10, 255, 71], [255, 41, 10], [7, 255, 255],
59
- [224, 255, 8], [102, 8, 255], [255, 61, 6], [255, 194, 7],
60
- [255, 122, 8], [0, 255, 20], [255, 8, 41], [255, 5, 153],
61
- [6, 51, 255], [235, 12, 255], [160, 150, 20], [0, 163, 255],
62
- [140, 140, 140], [250, 10, 15], [20, 255, 0], [31, 255, 0],
63
- [255, 31, 0], [255, 224, 0], [153, 255, 0], [0, 0, 255],
64
- [255, 71, 0], [0, 235, 255], [0, 173, 255], [31, 0, 255],
65
- [11, 200, 200], [255, 82, 0], [0, 255, 245], [0, 61, 255],
66
- [0, 255, 112], [0, 255, 133], [255, 0, 0], [255, 163, 0],
67
- [255, 102, 0], [194, 255, 0], [0, 143, 255], [51, 255, 0],
68
- [0, 82, 255], [0, 255, 41], [0, 255, 173], [10, 0, 255],
69
- [173, 255, 0], [0, 255, 153], [255, 92, 0], [255, 0, 255],
70
- [255, 0, 245], [255, 0, 102], [255, 173, 0], [255, 0, 20],
71
- [255, 184, 184], [0, 31, 255], [0, 255, 61], [0, 71, 255],
72
- [255, 0, 204], [0, 255, 194], [0, 255, 82], [0, 10, 255],
73
- [0, 112, 255], [51, 0, 255], [0, 194, 255], [0, 122, 255],
74
- [0, 255, 163], [255, 153, 0], [0, 255, 10], [255, 112, 0],
75
- [143, 255, 0], [82, 0, 255], [163, 255, 0], [255, 235, 0],
76
- [8, 184, 170], [133, 0, 255], [0, 255, 92], [184, 0, 255],
77
- [255, 0, 31], [0, 184, 255], [0, 214, 255], [255, 0, 112],
78
- [92, 255, 0], [0, 224, 255], [112, 224, 255], [70, 184, 160],
79
- [163, 0, 255], [153, 0, 255], [71, 255, 0], [255, 0, 163],
80
- [255, 204, 0], [255, 0, 143], [0, 255, 235], [133, 255, 0],
81
- [255, 0, 235], [245, 0, 255], [255, 0, 122], [255, 245, 0],
82
- [10, 190, 212], [214, 255, 0], [0, 204, 255], [20, 0, 255],
83
- [255, 255, 0], [0, 153, 255], [0, 41, 255], [0, 255, 204],
84
- [41, 0, 255], [41, 255, 0], [173, 0, 255], [0, 245, 255],
85
- [71, 0, 255], [122, 0, 255], [0, 255, 184], [0, 92, 255],
86
- [184, 255, 0], [0, 133, 255], [255, 214, 0], [25, 194, 194],
87
- [102, 255, 0], [92, 0, 255]]
88
-
89
-
90
- @torch.inference_mode
91
- @space.GPU
92
- def get_depth_image(image: Image) -> Image:
93
-
94
- """
95
- create depth image
96
- """
97
-
98
- image_to_depth = depth_image_processor(images=image, return_tensors="pt").to("cuda")
99
- with torch.no_grad():
100
- depth_map = depth_model(**image_to_depth).predicted_depth
101
-
102
- width, height = image.size
103
- depth_map = torch.nn.functional.interpolate(
104
- depth_map.unsqueeze(1).float(),
105
- size=(height, width),
106
- mode="bicubic",
107
- align_corners=False,
108
- )
109
- depth_min = torch.amin(depth_map, dim=[1, 2, 3], keepdim=True)
110
- depth_max = torch.amax(depth_map, dim=[1, 2, 3], keepdim=True)
111
- depth_map = (depth_map - depth_min) / (depth_max - depth_min)
112
- image = torch.cat([depth_map] * 3, dim=1)
113
-
114
- image = image.permute(0, 2, 3, 1).cpu().numpy()[0]
115
- image = Image.fromarray((image * 255.0).clip(0, 255).astype(np.uint8))
116
- return image
117
-
118
- @torch.inference_mode
119
- @space.GPU
120
- def get_segmentation_of_room(image: Image):
121
- #-> tuple[np.ndarray, Image]:
122
-
123
- """
124
- create instance segmentation image
125
- """
126
-
127
- # Semantic Segmentation
128
- with torch.inference_mode():
129
- semantic_inputs = processor(images=image, task_inputs=["semantic"], return_tensors="pt")
130
- semantic_inputs = {key: value.to("cuda") for key, value in semantic_inputs.items()}
131
- semantic_outputs = model(**semantic_inputs)
132
- # pass through image_processor for postprocessing
133
- predicted_semantic_map = \
134
- processor.post_process_semantic_segmentation(semantic_outputs, target_sizes=[image.size[::-1]])[0]
135
-
136
- predicted_semantic_map = predicted_semantic_map.cpu()
137
- color_seg = np.zeros((predicted_semantic_map.shape[0], predicted_semantic_map.shape[1], 3), dtype=np.uint8)
138
-
139
- palette = np.array(ade_palette())
140
- for label, color in enumerate(palette):
141
- color_seg[predicted_semantic_map == label, :] = color
142
-
143
- color_seg = color_seg.astype(np.uint8)
144
- seg_image = Image.fromarray(color_seg).convert('RGB')
145
- return seg_image
146
-
147
- @torch.inference_mode
148
- @space.GPU
149
- def interior_inference(image,
150
- prompt,
151
- negative_prompt="window, door, low resolution, banner, logo, watermark, text, deformed, blurry, out of focus, surreal, ugly, beginner",
152
- num_inference_steps=25,
153
- depth_weight=0.9,
154
- segment_weight=0.9,
155
- lora_weight=0.7,
156
- seed= 123):
157
-
158
- depth_image = get_depth_image(image)
159
- segmentation_image = get_segmentation_of_room(image)
160
- prompt = prompt + " interior design, 4K, high resolution, photorealistic"
161
-
162
- image_interior = pipeline(
163
- prompt,
164
- negative_prompt = negative_prompt,
165
- image = [depth_image, segmentation_image],
166
- num_inference_steps = num_inference_steps,
167
- generator = torch.manual_seed(seed),
168
-
169
- #lora_scale if enable_lora
170
- cross_attention_kwargs={"scale": lora_weight},
171
- controlnet_conditioning_scale=[depth_weight, segment_weight],
172
- ).images[0]
173
-
174
- return image_interior
175
-
176
- interface = gr.Interface(
177
- fn = interior_inference,
178
- inputs = [
179
- gr.Image(type = "pil", label = "Empty room image", show_label = True),
180
- gr.Textbox(label = "Prompt", lines = 3, placeholder = "Enter your prompt here"),
181
- ],
182
- outputs=[
183
- gr.Image(type = "pil", label = "Interior design", show_label = True),
184
- ],
185
- additional_inputs=[
186
- gr.Textbox(label = "Negative prompt", lines = 3, placeholder = "Enter your negative prompt here"),
187
- gr.Slider(label = "Number of inference steps", minimum = 1, maximum = 100, value = 25, step = 1),
188
- gr.Slider(label = "Depth weight", minimum = 0, maximum = 1, value = 0.9, step = 0.1),
189
- gr.Slider(label = "Segment weight", minimum = 0, maximum = 1, value = 0.9, step = 0.1),
190
- gr.Slider(label = "Lora weight", minimum = 0, maximum = 1, value = 0.7, step = 0.1),
191
- gr.Number(label = "Seed", value = 123),
192
- ],
193
- title="INTERIOR DESIGN",
194
- description="**We will design your empty room become the beautiful room",
195
- )
196
-
197
- if "__name__" =="__main__":
198
  interface.launch()
 
1
+ import spaces
2
+ import torch
3
+ import numpy as np
4
+ from transformers import AutoImageProcessor, AutoModelForDepthEstimation
5
+ from diffusers import StableDiffusionControlNetPipeline, ControlNetModel, UniPCMultistepScheduler
6
+ import natten
7
+ import gradio
8
+ from PIL import Image
9
+
10
+
11
+ """
12
+ IMPORT MODEL
13
+ """
14
+
15
+ #model generate depth image
16
+ depth_image_processor = AutoImageProcessor.from_pretrained("LiheYoung/depth-anything-large-hf", torch_dtype=torch.float16)
17
+ depth_model = AutoModelForDepthEstimation.from_pretrained("LiheYoung/depth-anything-large-hf", torch_dtype=torch.float16)
18
+ depth_model = depth_model.cuda()
19
+
20
+ #model generate segment image
21
+ from transformers import OneFormerProcessor, OneFormerForUniversalSegmentation
22
+
23
+ processor = OneFormerProcessor.from_pretrained("shi-labs/oneformer_ade20k_dinat_large")
24
+ model = OneFormerForUniversalSegmentation.from_pretrained("shi-labs/oneformer_ade20k_dinat_large")
25
+ model = model.cuda()
26
+
27
+ #model generate image
28
+
29
+ #load depth controlnet, segmentation controlnet
30
+ controlnets = [
31
+ ControlNetModel.from_pretrained("Lam-Hung/controlnet_depth_interior", torch_dtype=torch.float16, use_safetensors=True),
32
+ ControlNetModel.from_pretrained("Lam-Hung/controlnet_segment_interior", torch_dtype=torch.float16, use_safetensors=True)
33
+ ]
34
+ #load stable diffusion 1.5 and controlnets
35
+ pipeline = StableDiffusionControlNetPipeline.from_pretrained(
36
+ "runwayml/stable-diffusion-v1-5", controlnet= controlnets, torch_dtype=torch.float16, use_safetensors=True
37
+ )
38
+ # take UniPCMultistepScheduler for faster inference
39
+ pipeline.scheduler = UniPCMultistepScheduler.from_config(pipeline.scheduler.config)
40
+ pipeline.load_lora_weights('Lam-Hung/controlnet_lora_interior', weight_name= "pytorch_lora_weights.safetensors", adapter_name="interior")
41
+ pipeline.to("cuda")
42
+
43
+
44
+
45
+ """
46
+ IMPORT FUNCTION
47
+ """
48
+ def ade_palette() -> list[list[int]]:
49
+ """ADE20K palette that maps each class to RGB values."""
50
+ return [[120, 120, 120], [180, 120, 120], [6, 230, 230], [80, 50, 50],
51
+ [4, 200, 3], [120, 120, 80], [140, 140, 140], [204, 5, 255],
52
+ [230, 230, 230], [4, 250, 7], [224, 5, 255], [235, 255, 7],
53
+ [150, 5, 61], [120, 120, 70], [8, 255, 51], [255, 6, 82],
54
+ [143, 255, 140], [204, 255, 4], [255, 51, 7], [204, 70, 3],
55
+ [0, 102, 200], [61, 230, 250], [255, 6, 51], [11, 102, 255],
56
+ [255, 7, 71], [255, 9, 224], [9, 7, 230], [220, 220, 220],
57
+ [255, 9, 92], [112, 9, 255], [8, 255, 214], [7, 255, 224],
58
+ [255, 184, 6], [10, 255, 71], [255, 41, 10], [7, 255, 255],
59
+ [224, 255, 8], [102, 8, 255], [255, 61, 6], [255, 194, 7],
60
+ [255, 122, 8], [0, 255, 20], [255, 8, 41], [255, 5, 153],
61
+ [6, 51, 255], [235, 12, 255], [160, 150, 20], [0, 163, 255],
62
+ [140, 140, 140], [250, 10, 15], [20, 255, 0], [31, 255, 0],
63
+ [255, 31, 0], [255, 224, 0], [153, 255, 0], [0, 0, 255],
64
+ [255, 71, 0], [0, 235, 255], [0, 173, 255], [31, 0, 255],
65
+ [11, 200, 200], [255, 82, 0], [0, 255, 245], [0, 61, 255],
66
+ [0, 255, 112], [0, 255, 133], [255, 0, 0], [255, 163, 0],
67
+ [255, 102, 0], [194, 255, 0], [0, 143, 255], [51, 255, 0],
68
+ [0, 82, 255], [0, 255, 41], [0, 255, 173], [10, 0, 255],
69
+ [173, 255, 0], [0, 255, 153], [255, 92, 0], [255, 0, 255],
70
+ [255, 0, 245], [255, 0, 102], [255, 173, 0], [255, 0, 20],
71
+ [255, 184, 184], [0, 31, 255], [0, 255, 61], [0, 71, 255],
72
+ [255, 0, 204], [0, 255, 194], [0, 255, 82], [0, 10, 255],
73
+ [0, 112, 255], [51, 0, 255], [0, 194, 255], [0, 122, 255],
74
+ [0, 255, 163], [255, 153, 0], [0, 255, 10], [255, 112, 0],
75
+ [143, 255, 0], [82, 0, 255], [163, 255, 0], [255, 235, 0],
76
+ [8, 184, 170], [133, 0, 255], [0, 255, 92], [184, 0, 255],
77
+ [255, 0, 31], [0, 184, 255], [0, 214, 255], [255, 0, 112],
78
+ [92, 255, 0], [0, 224, 255], [112, 224, 255], [70, 184, 160],
79
+ [163, 0, 255], [153, 0, 255], [71, 255, 0], [255, 0, 163],
80
+ [255, 204, 0], [255, 0, 143], [0, 255, 235], [133, 255, 0],
81
+ [255, 0, 235], [245, 0, 255], [255, 0, 122], [255, 245, 0],
82
+ [10, 190, 212], [214, 255, 0], [0, 204, 255], [20, 0, 255],
83
+ [255, 255, 0], [0, 153, 255], [0, 41, 255], [0, 255, 204],
84
+ [41, 0, 255], [41, 255, 0], [173, 0, 255], [0, 245, 255],
85
+ [71, 0, 255], [122, 0, 255], [0, 255, 184], [0, 92, 255],
86
+ [184, 255, 0], [0, 133, 255], [255, 214, 0], [25, 194, 194],
87
+ [102, 255, 0], [92, 0, 255]]
88
+
89
+
90
+ @torch.inference_mode
91
+ @space.GPU
92
+ def get_depth_image(image: Image) -> Image:
93
+
94
+ """
95
+ create depth image
96
+ """
97
+
98
+ image_to_depth = depth_image_processor(images=image, return_tensors="pt").to("cuda")
99
+ with torch.no_grad():
100
+ depth_map = depth_model(**image_to_depth).predicted_depth
101
+
102
+ width, height = image.size
103
+ depth_map = torch.nn.functional.interpolate(
104
+ depth_map.unsqueeze(1).float(),
105
+ size=(height, width),
106
+ mode="bicubic",
107
+ align_corners=False,
108
+ )
109
+ depth_min = torch.amin(depth_map, dim=[1, 2, 3], keepdim=True)
110
+ depth_max = torch.amax(depth_map, dim=[1, 2, 3], keepdim=True)
111
+ depth_map = (depth_map - depth_min) / (depth_max - depth_min)
112
+ image = torch.cat([depth_map] * 3, dim=1)
113
+
114
+ image = image.permute(0, 2, 3, 1).cpu().numpy()[0]
115
+ image = Image.fromarray((image * 255.0).clip(0, 255).astype(np.uint8))
116
+ return image
117
+
118
+ @torch.inference_mode
119
+ @space.GPU
120
+ def get_segmentation_of_room(image: Image):
121
+ #-> tuple[np.ndarray, Image]:
122
+
123
+ """
124
+ create instance segmentation image
125
+ """
126
+
127
+ # Semantic Segmentation
128
+ with torch.inference_mode():
129
+ semantic_inputs = processor(images=image, task_inputs=["semantic"], return_tensors="pt")
130
+ semantic_inputs = {key: value.to("cuda") for key, value in semantic_inputs.items()}
131
+ semantic_outputs = model(**semantic_inputs)
132
+ # pass through image_processor for postprocessing
133
+ predicted_semantic_map = \
134
+ processor.post_process_semantic_segmentation(semantic_outputs, target_sizes=[image.size[::-1]])[0]
135
+
136
+ predicted_semantic_map = predicted_semantic_map.cpu()
137
+ color_seg = np.zeros((predicted_semantic_map.shape[0], predicted_semantic_map.shape[1], 3), dtype=np.uint8)
138
+
139
+ palette = np.array(ade_palette())
140
+ for label, color in enumerate(palette):
141
+ color_seg[predicted_semantic_map == label, :] = color
142
+
143
+ color_seg = color_seg.astype(np.uint8)
144
+ seg_image = Image.fromarray(color_seg).convert('RGB')
145
+ return seg_image
146
+
147
+ @torch.inference_mode
148
+ @space.GPU
149
+ def interior_inference(image,
150
+ prompt,
151
+ negative_prompt="window, door, low resolution, banner, logo, watermark, text, deformed, blurry, out of focus, surreal, ugly, beginner",
152
+ num_inference_steps=25,
153
+ depth_weight=0.9,
154
+ segment_weight=0.9,
155
+ lora_weight=0.7,
156
+ seed= 123):
157
+
158
+ depth_image = get_depth_image(image)
159
+ segmentation_image = get_segmentation_of_room(image)
160
+ prompt = prompt + " interior design, 4K, high resolution, photorealistic"
161
+
162
+ image_interior = pipeline(
163
+ prompt,
164
+ negative_prompt = negative_prompt,
165
+ image = [depth_image, segmentation_image],
166
+ num_inference_steps = num_inference_steps,
167
+ generator = torch.manual_seed(seed),
168
+
169
+ #lora_scale if enable_lora
170
+ cross_attention_kwargs={"scale": lora_weight},
171
+ controlnet_conditioning_scale=[depth_weight, segment_weight],
172
+ ).images[0]
173
+
174
+ return image_interior
175
+
176
+ interface = gr.Interface(
177
+ fn = interior_inference,
178
+ inputs = [
179
+ gr.Image(type = "pil", label = "Empty room image", show_label = True),
180
+ gr.Textbox(label = "Prompt", lines = 3, placeholder = "Enter your prompt here"),
181
+ ],
182
+ outputs=[
183
+ gr.Image(type = "pil", label = "Interior design", show_label = True),
184
+ ],
185
+ additional_inputs=[
186
+ gr.Textbox(label = "Negative prompt", lines = 3, placeholder = "Enter your negative prompt here"),
187
+ gr.Slider(label = "Number of inference steps", minimum = 1, maximum = 100, value = 25, step = 1),
188
+ gr.Slider(label = "Depth weight", minimum = 0, maximum = 1, value = 0.9, step = 0.1),
189
+ gr.Slider(label = "Segment weight", minimum = 0, maximum = 1, value = 0.9, step = 0.1),
190
+ gr.Slider(label = "Lora weight", minimum = 0, maximum = 1, value = 0.7, step = 0.1),
191
+ gr.Number(label = "Seed", value = 123),
192
+ ],
193
+ title="INTERIOR DESIGN",
194
+ description="**We will design your empty room become the beautiful room",
195
+ )
196
+
197
+ if "__name__" =="__main__":
198
  interface.launch()