Spaces:
Runtime error
Runtime error
File size: 4,282 Bytes
4426b83 fb259a6 7efee95 4426b83 6e510a5 4426b83 6e510a5 1bc4eb9 4426b83 1bc4eb9 6e510a5 d533c0e 4426b83 6e510a5 1bc4eb9 4426b83 7efee95 4426b83 fb259a6 4426b83 fb259a6 4426b83 fb259a6 4426b83 fb259a6 4426b83 fb259a6 4426b83 fb259a6 4426b83 fb259a6 4426b83 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 |
import os
from threading import Thread
from typing import Iterator
import gradio as gr
import spaces
import torch
from transformers import BitsAndBytesConfig, AutoModelForCausalLM, GemmaTokenizerFast, TextIteratorStreamer
huggingface_token = os.getenv('read_access')
MAX_MAX_NEW_TOKENS = 2048
DEFAULT_MAX_NEW_TOKENS = 1024
MAX_INPUT_TOKEN_LENGTH = int(os.getenv("MAX_INPUT_TOKEN_LENGTH", "4096"))
device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
model_id = "google/gemma-2-9b-it"
tokenizer = GemmaTokenizerFast.from_pretrained(model_id, token = huggingface_token)
quantization = BitsAndBytesConfig(load_in_4bit= True)
model = AutoModelForCausalLM.from_pretrained(
model_id,
device_map="auto",
torch_dtype=torch.bfloat16,
quantization_config=quantization,
token = huggingface_token
)
model.config.sliding_window = 4096
model.eval()
@spaces.GPU(duration=90)
def generate(
message: str,
chat_history: list[tuple[str, str]],
max_new_tokens: int = 1024,
temperature: float = 0.6,
top_p: float = 0.9,
top_k: int = 50,
repetition_penalty: float = 1.2,
) -> Iterator[str]:
conversation = []
for user, assistant in chat_history:
conversation.extend(
[
{"role": "user", "content": user},
{"role": "assistant", "content": assistant},
]
)
conversation.append({"role": "user", "content": message})
input_ids = tokenizer.apply_chat_template(conversation, add_generation_prompt=True, return_tensors="pt")
if input_ids.shape[1] > MAX_INPUT_TOKEN_LENGTH:
input_ids = input_ids[:, -MAX_INPUT_TOKEN_LENGTH:]
gr.Warning(f"Trimmed input from conversation as it was longer than {MAX_INPUT_TOKEN_LENGTH} tokens.")
input_ids = input_ids.to(model.device)
streamer = TextIteratorStreamer(tokenizer, timeout=20.0, skip_prompt=True, skip_special_tokens=True)
generate_kwargs = dict(
{"input_ids": input_ids},
streamer=streamer,
max_new_tokens=max_new_tokens,
do_sample=True,
top_p=top_p,
top_k=top_k,
temperature=temperature,
num_beams=1,
repetition_penalty=repetition_penalty,
)
t = Thread(target=model.generate, kwargs=generate_kwargs)
t.start()
outputs = []
for text in streamer:
outputs.append(text)
yield "".join(outputs)
chat_interface = gr.ChatInterface(
fn=generate,
chatbot=gr.Chatbot(height=500, label = "日本語アシスタント", show_label=True),
textbox=gr.Textbox(placeholder="メッセージを入力してください", container=False, scale=7),
additional_inputs=[
gr.Slider(
label="テキスト作成時の最大単語数",
minimum=1,
maximum=MAX_MAX_NEW_TOKENS,
step=1,
value=DEFAULT_MAX_NEW_TOKENS,
),
gr.Slider(
label="創造",
minimum=0.1,
maximum=4.0,
step=0.1,
value=0.2,
),
gr.Slider(
label="最も確率の高い単語のグループ",
minimum=0.05,
maximum=1.0,
step=0.05,
value=0.9,
),
gr.Slider(
label="上位の単語の確率が最も高い(top-k)",
minimum=1,
maximum=1000,
step=1,
value=50,
),
gr.Slider(
label="懲罰を繰り返す",
minimum=1.0,
maximum=2.0,
step=0.05,
value=1.1,
),
],
theme="soft",
stop_btn=None,
examples = [
["寿司の作り方"],
["美しい着物ドレスの選び方"],
["地震が起きたらどうするか"],
["どうすれば幸せに生きられるか"],
["魚を食べることの利点"],
["グループで効果的に作業する方法"]
],
cache_examples=False,
title = "日本語アシスタント",
clear_btn="🗑️ 消す",
undo_btn="↩️ 元に戻す",
submit_btn="🚀 送信",
retry_btn="🔄 リトライ",
additional_inputs_accordion="高度なカスタマイズ",
)
if __name__ == "__main__":
chat_interface.queue(max_size=20).launch() |