LukeJacob2023 commited on
Commit
9328f5f
β€’
1 Parent(s): 2fb11d3

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +65 -65
app.py CHANGED
@@ -1,65 +1,65 @@
1
- import spaces
2
- import torch
3
- import re
4
- import gradio as gr
5
- from transformers import AutoTokenizer, AutoModelForCausalLM
6
- from PIL import Image
7
-
8
- if torch.cuda.is_available():
9
- device, dtype = "cuda", torch.float16
10
- else:
11
- device, dtype = "cpu", torch.float32
12
-
13
- model_id = "vikhyatk/moondream2"
14
- revision = "2024-08-26"
15
- tokenizer = AutoTokenizer.from_pretrained(model_id, revision=revision)
16
- moondream = AutoModelForCausalLM.from_pretrained(
17
- model_id, trust_remote_code=True, revision=revision, torch_dtype=dtype
18
- ).to(device=device)
19
- moondream.eval()
20
-
21
- @spaces.GPU
22
- def answer_questions(image_tuples, prompt_text):
23
- result = ""
24
- Q_and_A = ""
25
- prompts = [p.strip() for p in prompt_text.split(',')]
26
- image_embeds = [img[0] for img in image_tuples if img[0] is not None]
27
-
28
- #print(f"\nprompts: {prompts}\n\n")
29
- answers = []
30
- for prompt in prompts:
31
- image_answers = moondream.batch_answer(
32
- images=[img.convert("RGB") for img in image_embeds],
33
- prompts=[prompt] * len(image_embeds),
34
- tokenizer=tokenizer,
35
- )
36
- answers.append(image_answers)
37
-
38
- for i, prompt in enumerate(prompts):
39
- Q_and_A += f"### Q: {prompt}\n"
40
- for j, image_tuple in enumerate(image_tuples):
41
- image_name = f"image{j+1}"
42
- answer_text = answers[i][j]
43
- Q_and_A += f"**{image_name} A:** \n {answer_text} \n\n"
44
-
45
- result = {'headers': prompts, 'data': answers}
46
- #print(f"result\n{result}\n\nQ_and_A\n{Q_and_A}\n\n")
47
- return Q_and_A, result
48
-
49
- with gr.Blocks() as demo:
50
- gr.Markdown("# MoonDream WebUI")
51
- gr.Markdown("## πŸŒ” Modify by https://huggingface.co/spaces/Csplk/moondream2-batch-processing")
52
- gr.Markdown("## πŸŒ” moondream2\nA tiny vision language model. [GitHub](https://github.com/vikhyatk/moondream)")
53
- with gr.Row():
54
- img = gr.Gallery(label="Upload Images", type="pil", preview=True, columns=4)
55
- with gr.Row():
56
- prompt = gr.Textbox(label="Input Prompts", placeholder="Enter prompts (one prompt for each image provided) separated by commas. Ex: Describe this image, What is in this image?", lines=8)
57
- with gr.Row():
58
- submit = gr.Button("Submit")
59
- with gr.Row():
60
- output = gr.Markdown(label="Questions and Answers", line_breaks=True)
61
- with gr.Row():
62
- output2 = gr.Dataframe(label="Structured Dataframe", type="array", wrap=True)
63
- submit.click(answer_questions, [img, prompt], [output, output2])
64
-
65
- demo.queue().launch()
 
1
+ import spaces
2
+ import torch
3
+ import re
4
+ import gradio as gr
5
+ from transformers import AutoTokenizer, AutoModelForCausalLM
6
+ from PIL import Image
7
+
8
+ if torch.cuda.is_available():
9
+ device, dtype = "cuda", torch.float16
10
+ else:
11
+ device, dtype = "cpu", torch.float32
12
+
13
+ model_id = "vikhyatk/moondream2"
14
+ revision = "2024-08-26"
15
+ tokenizer = AutoTokenizer.from_pretrained(model_id, revision=revision)
16
+ moondream = AutoModelForCausalLM.from_pretrained(
17
+ model_id, trust_remote_code=True, revision=revision, torch_dtype=dtype
18
+ ).to(device=device)
19
+ moondream.eval()
20
+
21
+ @spaces.GPU
22
+ def answer_questions(image_tuples, prompt_text):
23
+ result = ""
24
+ Q_and_A = ""
25
+ prompts = [p.strip() for p in prompt_text.split(',')]
26
+ image_embeds = [img[0] for img in image_tuples if img[0] is not None]
27
+
28
+ #print(f"\nprompts: {prompts}\n\n")
29
+ answers = []
30
+ for prompt in prompts:
31
+ image_answers = moondream.batch_answer(
32
+ images=[img.convert("RGB") for img in image_embeds],
33
+ prompts=[prompt] * len(image_embeds),
34
+ tokenizer=tokenizer,
35
+ )
36
+ answers.append(image_answers)
37
+
38
+ for i, prompt in enumerate(prompts):
39
+ Q_and_A += f"### Q: {prompt}\n"
40
+ for j, image_tuple in enumerate(image_tuples):
41
+ image_name = f"image{j+1}"
42
+ answer_text = answers[i][j]
43
+ Q_and_A += f"**{image_name} A:** \n {answer_text} \n\n"
44
+
45
+ result = {'headers': prompts, 'data': answers}
46
+ #print(f"result\n{result}\n\nQ_and_A\n{Q_and_A}\n\n")
47
+ return Q_and_A, result
48
+
49
+ with gr.Blocks() as demo:
50
+ gr.Markdown("# MoonDream WebUI")
51
+ gr.Markdown("## πŸŒ” WebUI is modify by https://huggingface.co/spaces/Csplk/moondream2-batch-processing")
52
+ gr.Markdown("## πŸŒ” moondream2 - A tiny vision language model. [GitHub](https://github.com/vikhyatk/moondream)")
53
+ with gr.Row():
54
+ img = gr.Gallery(label="Upload Images", type="pil", preview=True, columns=4)
55
+ with gr.Row():
56
+ prompt = gr.Textbox(label="Input Prompts", placeholder="Enter prompts (one prompt for each image provided) separated by commas. Ex: Describe this image, What is in this image?", lines=8)
57
+ with gr.Row():
58
+ submit = gr.Button("Submit")
59
+ with gr.Row():
60
+ output = gr.Markdown(label="Questions and Answers", line_breaks=True)
61
+ with gr.Row():
62
+ output2 = gr.Dataframe(label="Structured Dataframe", type="array", wrap=True)
63
+ submit.click(answer_questions, [img, prompt], [output, output2])
64
+
65
+ demo.queue().launch()