import spaces import torch import re import gradio as gr from transformers import AutoTokenizer, AutoModelForCausalLM from PIL import Image if torch.cuda.is_available(): device, dtype = "cuda", torch.float16 else: device, dtype = "cpu", torch.float32 model_id = "vikhyatk/moondream2" revision = "2024-08-26" tokenizer = AutoTokenizer.from_pretrained(model_id, revision=revision) moondream = AutoModelForCausalLM.from_pretrained( model_id, trust_remote_code=True, revision=revision, torch_dtype=dtype ).to(device=device) moondream.eval() @spaces.GPU def answer_questions(image_tuples, prompt_text): result = "" Q_and_A = "" prompts = [p.strip() for p in prompt_text.split(',')] image_embeds = [img[0] for img in image_tuples if img[0] is not None] #print(f"\nprompts: {prompts}\n\n") answers = [] for prompt in prompts: image_answers = moondream.batch_answer( images=[img.convert("RGB") for img in image_embeds], prompts=[prompt] * len(image_embeds), tokenizer=tokenizer, ) answers.append(image_answers) for i, prompt in enumerate(prompts): Q_and_A += f"### Q: {prompt}\n" for j, image_tuple in enumerate(image_tuples): image_name = f"image{j+1}" answer_text = answers[i][j] Q_and_A += f"**{image_name} A:** \n {answer_text} \n\n" result = {'headers': prompts, 'data': answers} #print(f"result\n{result}\n\nQ_and_A\n{Q_and_A}\n\n") return Q_and_A, result with gr.Blocks() as demo: gr.Markdown("# MoonDream WebUI") gr.Markdown("## 🌔 WebUI is modify by https://huggingface.co/spaces/Csplk/moondream2-batch-processing") gr.Markdown("## 🌔 moondream2 - A tiny vision language model. [GitHub](https://github.com/vikhyatk/moondream)") with gr.Row(): img = gr.Gallery(label="Upload Images", type="pil", preview=True, columns=4) with gr.Row(): prompt = gr.Textbox(label="Input Prompts", placeholder="Enter prompts (one prompt for each image provided) separated by commas. Ex: Describe this image, What is in this image?", lines=8) with gr.Row(): submit = gr.Button("Submit") with gr.Row(): output = gr.Markdown(label="Questions and Answers", line_breaks=True) with gr.Row(): output2 = gr.Dataframe(label="Structured Dataframe", type="array", wrap=True) submit.click(answer_questions, [img, prompt], [output, output2]) demo.queue().launch()