##Implementation of tranformer from scratch, this implememtation was inspired by Umar Jamir import torch import torch.nn as nn import math import torch.nn.functional as F class InputEmbeddings(nn.Module): def __init__(self, d_model: int, vocab_size: int) -> None: super(InputEmbeddings, self).__init__() self.d_model = d_model self.embedding = nn.Embedding(vocab_size, d_model) def forward(self, x): # (batch, seq_len) --> (batch, seq_len, d_model) # Multiply by sqrt(d_model) to scale the embeddings according to the paper return self.embedding(x) * math.sqrt(self.d_model) class PositionEncoding(nn.Module): def __init__(self, seq_len: int, d_model:int, batch: int) -> None: super(PositionEncoding, self).__init__() # self.seq_len = seq_len # self.d_model = d_model # self.batch = batch self.dropout = nn.Dropout(p=0.1) ##initialize the positional encoding with zeros positional_encoding = torch.zeros(seq_len, d_model) ##first path of the equation is postion/scaling factor per dimesnsion postion = torch.arange(0, seq_len, dtype=torch.float).unsqueeze(1) ## this calculates the scaling term per dimension (512) div_term = torch.exp(torch.arange(0, d_model, 2).float() * (-math.log(10000.0) / d_model)) # div_term = torch.pow(10, torch.arange(0,self.d_model, 2).float() *-4/self.d_model) ## this calculates the sin values for even indices positional_encoding[:, 0::2] = torch.sin(postion * div_term) ## this calculates the cos values for odd indices positional_encoding[:, 1::2] = torch.cos(postion * div_term) positional_encoding = positional_encoding.unsqueeze(0) self.register_buffer('positional_encoding', positional_encoding) def forward(self, x): x = x + (self.positional_encoding[:, :x.shape[1], :]).requires_grad_(False) # (batch, seq_len, d_model) return self.dropout(x) class MultiHeadAttention(nn.Module): def __init__(self, d_model:int, heads: int) -> None: super(MultiHeadAttention,self).__init__() self.head = heads self.head_dim = d_model // heads assert d_model % heads == 0, 'cannot divide d_model by heads' ## initialize the query, key and value weights 512*512 self.query_weight = nn.Linear(d_model, d_model, bias=False) self.key_weight = nn.Linear(d_model, d_model,bias=False) self.value_weight = nn.Linear(d_model, d_model,bias=False) self.final_weight = nn.Linear(d_model, d_model, bias=False) self.dropout = nn.Dropout(p=0.1) def self_attention(self,query, key, value, mask,dropout): #splitting query, key and value into heads #this gives us a dimension of batch, num_heads, seq_len by 64. basically 1 sentence is converted to have 8 parts (heads) query = query.view(query.shape[0], query.shape[1],self.head,self.head_dim).transpose(2,1) key = key.view(key.shape[0], key.shape[1],self.head,self.head_dim).transpose(2,1) value = value.view(value.shape[0], value.shape[1],self.head,self.head_dim).transpose(2,1) attention = query @ key.transpose(3,2) attention = attention / math.sqrt(query.shape[-1]) if mask is not None: attention = attention.masked_fill(mask == 0, -1e9) attention = torch.softmax(attention, dim=-1) if dropout is not None: attention = dropout(attention) attention_scores = attention @ value return attention_scores.transpose(2,1).contiguous().view(attention_scores.shape[0], -1, self.head_dim * self.head) def forward(self,query, key, value,mask): ## initialize the query, key and value matrices to give us seq_len by 512 query = self.query_weight(query) key = self.key_weight(key) value = self.value_weight(value) attention = MultiHeadAttention.self_attention(self, query, key, value, mask, self.dropout) return self.final_weight(attention) class FeedForward(nn.Module): def __init__(self,d_model:int, d_ff:int ) -> None: super(FeedForward, self).__init__() self.fc1 = nn.Linear(d_model, d_ff) # Fully connected layer 1 self.dropout = nn.Dropout(p=0.1) # Dropout layer self.fc2 = nn.Linear(d_ff, d_model) # Fully connected layer 2 def forward(self,x ): return self.fc2(self.dropout(torch.relu(self.fc1(x)))) class ProjectionLayer(nn.Module): def __init__(self, d_model:int, vocab_size:int) : super(ProjectionLayer, self).__init__() self.fc = nn.Linear(d_model, vocab_size) def forward(self, x): x = self.fc(x) return torch.log_softmax(x, dim=-1) class EncoderBlock(nn.Module): def __init__(self, d_model:int, head:int, d_ff:int) -> None: super(EncoderBlock, self).__init__() self.multiheadattention = MultiHeadAttention(d_model,head) self.layer_norm1 = nn.LayerNorm(d_model) self.dropout1 = nn.Dropout(p=0.1) self.feedforward = FeedForward(d_model, d_ff) self.layer_norm2 = nn.LayerNorm(d_model) self.layer_norm3 = nn.LayerNorm(d_model) self.dropout2 = nn.Dropout(p=0.1) def forward(self, x, src_mask): # Self-attention block norm = self.layer_norm1(x) attention = self.multiheadattention(norm, norm, norm, src_mask) x = (x + self.dropout1(attention)) # Feedforward block norm2 = self.layer_norm2(x) ff = self.feedforward(x) return x + self.dropout2(ff) class Encoder(nn.Module): def __init__(self, number_of_block:int, d_model:int, head:int, d_ff:int) -> None: super(Encoder, self).__init__() self.norm = nn.LayerNorm(d_model) # Use nn.ModuleList to store the EncoderBlock instances self.encoders = nn.ModuleList([EncoderBlock(d_model, head, d_ff) for _ in range(number_of_block)]) def forward(self, x, src_mask): for encoder_block in self.encoders: x = encoder_block(x, src_mask) return self.norm(x) class DecoderBlock(nn.Module): def __init__(self, d_model:int, head:int, d_ff:int) -> None: super(DecoderBlock, self).__init__() self.head_dim = d_model // head self.multiheadattention = MultiHeadAttention(d_model, head) self.crossattention = MultiHeadAttention(d_model, head) self.layer_norm1 = nn.LayerNorm(d_model) self.dropout1 = nn.Dropout(p=0.1) self.feedforward = FeedForward(d_model,d_ff) self.layer_norm2 = nn.LayerNorm(d_model) self.layer_norm3 = nn.LayerNorm(d_model) self.layer_norm4 = nn.LayerNorm(d_model) self.dropout2 = nn.Dropout(p=0.1) self.dropout3 = nn.Dropout(p=0.1) def forward(self, x, src_mask, tgt_mask, encoder_output): #Self-attention block norm = self.layer_norm1(x) attention = self.multiheadattention(norm, norm, norm, tgt_mask) x = (x + self.dropout1(attention)) # Cross-attention block norm2 = self.layer_norm2(x) cross_attention = self.crossattention(norm, encoder_output, encoder_output, src_mask) x = (x + self.dropout2(cross_attention)) # Feedforward block norm3 = self.layer_norm3(x) ff = self.feedforward(norm3) return x + self.dropout3(ff) class Decoder(nn.Module): def __init__(self, number_of_block:int,d_model:int, head:int, d_ff:int) -> None: super(Decoder, self).__init__() self.norm = nn.LayerNorm(d_model) self.decoders = nn.ModuleList([DecoderBlock(d_model, head, d_ff) for _ in range(number_of_block)]) def forward(self, x, src_mask, tgt_mask, encoder_output): for decoder_block in self.decoders: x = decoder_block(x, src_mask, tgt_mask, encoder_output) return self.norm(x) class Transformer(nn.Module): def __init__(self, seq_len:int, batch:int, d_model:int,target_vocab_size:int, source_vocab_size:int, head: int = 8, d_ff: int = 2048, number_of_block: int = 6) -> None: super(Transformer, self).__init__() self.encoder = Encoder(number_of_block,d_model, head, d_ff ) self.decoder = Decoder(number_of_block, d_model, head, d_ff ) # encoder_layer = nn.TransformerEncoderLayer(d_model=512, nhead=8, batch_first=True) # self.encoder = nn.TransformerEncoder(encoder_layer, num_layers=6) # decoder_layer = nn.TransformerDecoderLayer(d_model=512, nhead=8, batch_first=True) # self.decoder = nn.TransformerDecoder(decoder_layer, num_layers=6) self.projection = ProjectionLayer(d_model, target_vocab_size) self.source_embedding = InputEmbeddings(d_model,source_vocab_size ) self.target_embedding = InputEmbeddings(d_model,target_vocab_size) self.positional_encoding = PositionEncoding(seq_len, d_model, batch) def encode(self,x, src_mask): x = self.source_embedding(x) x = self.positional_encoding(x) return self.encoder(x, src_mask) def decode(self,x, src_mask, tgt_mask, encoder_output): x = self.target_embedding(x) x = self.positional_encoding(x) return self.decoder(x, src_mask, tgt_mask, encoder_output,) def project(self, x): return self.projection(x) def build_transformer(seq_len, batch, target_vocab_size, source_vocab_size, d_model)-> Transformer: transformer = Transformer(seq_len, batch, d_model, target_vocab_size, source_vocab_size ) #Initialize the parameters for p in transformer.parameters(): if p.dim() > 1: nn.init.xavier_uniform_(p) return transformer # import torch # import torch.nn as nn # import math # class LayerNormalization(nn.Module): # def __init__(self, eps:float=10**-6) -> None: # super().__init__() # self.eps = eps # self.alpha = nn.Parameter(torch.ones(1)) # alpha is a learnable parameter # self.bias = nn.Parameter(torch.zeros(1)) # bias is a learnable parameter # def forward(self, x): # # x: (batch, seq_len, hidden_size) # # Keep the dimension for broadcasting # mean = x.mean(dim = -1, keepdim = True) # (batch, seq_len, 1) # # Keep the dimension for broadcasting # std = x.std(dim = -1, keepdim = True) # (batch, seq_len, 1) # # eps is to prevent dividing by zero or when std is very small # return self.alpha * (x - mean) / (std + self.eps) + self.bias # class FeedForwardBlock(nn.Module): # def __init__(self, d_model: int, d_ff: int, dropout: float) -> None: # super().__init__() # self.linear_1 = nn.Linear(d_model, d_ff) # w1 and b1 # self.dropout = nn.Dropout(dropout) # self.linear_2 = nn.Linear(d_ff, d_model) # w2 and b2 # def forward(self, x): # # (batch, seq_len, d_model) --> (batch, seq_len, d_ff) --> (batch, seq_len, d_model) # return self.linear_2(self.dropout(torch.relu(self.linear_1(x)))) # class InputEmbeddings(nn.Module): # def __init__(self, d_model: int, vocab_size: int) -> None: # super().__init__() # self.d_model = d_model # self.vocab_size = vocab_size # self.embedding = nn.Embedding(vocab_size, d_model) # def forward(self, x): # # (batch, seq_len) --> (batch, seq_len, d_model) # # Multiply by sqrt(d_model) to scale the embeddings according to the paper # return self.embedding(x) * math.sqrt(self.d_model) # class PositionalEncoding(nn.Module): # def __init__(self, d_model: int, seq_len: int, dropout: float) -> None: # super().__init__() # self.d_model = d_model # self.seq_len = seq_len # self.dropout = nn.Dropout(dropout) # # Create a matrix of shape (seq_len, d_model) # pe = torch.zeros(seq_len, d_model) # # Create a vector of shape (seq_len) # position = torch.arange(0, seq_len, dtype=torch.float).unsqueeze(1) # (seq_len, 1) # # Create a vector of shape (d_model) # div_term = torch.exp(torch.arange(0, d_model, 2).float() * (-math.log(10000.0) / d_model)) # (d_model / 2) # # Apply sine to even indices # pe[:, 0::2] = torch.sin(position * div_term) # sin(position * (10000 ** (2i / d_model)) # # Apply cosine to odd indices # pe[:, 1::2] = torch.cos(position * div_term) # cos(position * (10000 ** (2i / d_model)) # # Add a batch dimension to the positional encoding # pe = pe.unsqueeze(0) # (1, seq_len, d_model) # # Register the positional encoding as a buffer # pe = pe.transpose(1,2) # self.register_buffer('pe', pe) # def forward(self, x): # x = x + (self.pe[:, :x.shape[1], :]).requires_grad_(False) # (batch, seq_len, d_model) # return self.dropout(x) # class ResidualConnection(nn.Module): # def __init__(self, dropout: float) -> None: # super().__init__() # self.dropout = nn.Dropout(dropout) # self.norm = LayerNormalization() # def forward(self, x, sublayer): # return x + self.dropout(sublayer(self.norm(x))) # class MultiHeadAttentionBlock(nn.Module): # def __init__(self, d_model: int, h: int, dropout: float) -> None: # super().__init__() # self.d_model = d_model # Embedding vector size # self.h = h # Number of heads # # Make sure d_model is divisible by h # assert d_model % h == 0, "d_model is not divisible by h" # self.d_k = d_model // h # Dimension of vector seen by each head # self.w_q = nn.Linear(d_model, d_model) # Wq # self.w_k = nn.Linear(d_model, d_model) # Wk # self.w_v = nn.Linear(d_model, d_model) # Wv # self.w_o = nn.Linear(d_model, d_model) # Wo # self.dropout = nn.Dropout(dropout) # @staticmethod # def attention(query, key, value, mask, dropout: nn.Dropout): # d_k = query.shape[-1] # # Just apply the formula from the paper # # (batch, h, seq_len, d_k) --> (batch, h, seq_len, seq_len) # attention_scores = (query @ key.transpose(-2, -1)) / math.sqrt(d_k) # if mask is not None: # # Write a very low value (indicating -inf) to the positions where mask == 0 # attention_scores.masked_fill_(mask == 0, -1e9) # attention_scores = attention_scores.softmax(dim=-1) # (batch, h, seq_len, seq_len) # Apply softmax # if dropout is not None: # attention_scores = dropout(attention_scores) # # (batch, h, seq_len, seq_len) --> (batch, h, seq_len, d_k) # # return attention scores which can be used for visualization # return (attention_scores @ value), attention_scores # def forward(self, q, k, v, mask): # query = self.w_q(q) # (batch, seq_len, d_model) --> (batch, seq_len, d_model) # key = self.w_k(k) # (batch, seq_len, d_model) --> (batch, seq_len, d_model) # value = self.w_v(v) # (batch, seq_len, d_model) --> (batch, seq_len, d_model) # # (batch, seq_len, d_model) --> (batch, seq_len, h, d_k) --> (batch, h, seq_len, d_k) # query = query.view(query.shape[0], query.shape[1], self.h, self.d_k).transpose(1, 2) # key = key.view(key.shape[0], key.shape[1], self.h, self.d_k).transpose(1, 2) # value = value.view(value.shape[0], value.shape[1], self.h, self.d_k).transpose(1, 2) # # Calculate attention # x, self.attention_scores = MultiHeadAttentionBlock.attention(query, key, value, mask, self.dropout) # # Combine all the heads together # # (batch, h, seq_len, d_k) --> (batch, seq_len, h, d_k) --> (batch, seq_len, d_model) # x = x.transpose(1, 2).contiguous().view(x.shape[0], -1, self.h * self.d_k) # # Multiply by Wo # # (batch, seq_len, d_model) --> (batch, seq_len, d_model) # return self.w_o(x) # # class EncoderBlock(nn.Module): # # def __init__(self, self_attention_block: MultiHeadAttentionBlock, feed_forward_block: FeedForwardBlock, dropout: float) -> None: # # super().__init__() # # self.self_attention_block = self_attention_block # # self.feed_forward_block = feed_forward_block # # self.residual_connections = nn.ModuleList([ResidualConnection(dropout) for _ in range(2)]) # # def forward(self, x, src_mask): # # x = self.residual_connections[0](x, lambda x: self.self_attention_block(x, x, x, src_mask)) # # x = self.residual_connections[1](x, self.feed_forward_block) # # return x # # class Encoder(nn.Module): # # def __init__(self, layers: nn.ModuleList) -> None: # # super().__init__() # # self.layers = layers # # self.norm = LayerNormalization() # # def forward(self, x, mask): # # for layer in self.layers: # # x = layer(x, mask) # # return self.norm(x) # class EncoderBlock(nn.Module): # def __init__(self, d_model:int, head:int, d_ff:int) -> None: # super(EncoderBlock, self).__init__() # self.multiheadattention = MultiHeadAttentionBlock(d_model,head, 0.1) # self.layer_norm1 = nn.LayerNorm(d_model) # self.dropout1 = nn.Dropout(p=0.1) # self.feedforward = FeedForwardBlock(d_model, d_ff, 0.1) # self.layer_norm2 = nn.LayerNorm(d_model) # self.layer_norm3 = nn.LayerNorm(d_model) # self.dropout2 = nn.Dropout(p=0.1) # def forward(self, x, src_mask): # # Self-attention block # norm = self.layer_norm1(x) # attention = self.multiheadattention(norm, norm, norm, src_mask) # x = (x + self.dropout1(attention)) # # Feedforward block # norm2 = self.layer_norm2(x) # ff = self.feedforward(x) # return x + self.dropout2(ff) # class Encoder(nn.Module): # def __init__(self, number_of_block:int, d_model:int, head:int, d_ff:int) -> None: # super(Encoder, self).__init__() # self.norm = nn.LayerNorm(d_model) # # Use nn.ModuleList to store the EncoderBlock instances # self.encoders = nn.ModuleList([EncoderBlock(d_model, head, d_ff) # for _ in range(number_of_block)]) # def forward(self, x, src_mask): # for encoder_block in self.encoders: # x = encoder_block(x, src_mask) # return self.norm(x) # class ProjectionLayer(nn.Module): # def __init__(self, d_model, vocab_size) -> None: # super().__init__() # self.proj = nn.Linear(d_model, vocab_size) # def forward(self, x) -> None: # # (batch, seq_len, d_model) --> (batch, seq_len, vocab_size) # return torch.log_softmax(self.proj(x), dim = -1) # class DecoderBlock(nn.Module): # def __init__(self, d_model:int, head:int, d_ff:int) -> None: # super(DecoderBlock, self).__init__() # self.head_dim = d_model // head # self.multiheadattention = MultiHeadAttentionBlock(d_model, head, 0.1) # self.crossattention = MultiHeadAttentionBlock(d_model, head, 0.1) # self.layer_norm1 = nn.LayerNorm(d_model) # self.dropout1 = nn.Dropout(p=0.1) # self.feedforward = FeedForwardBlock(d_model,d_ff, 0.1) # self.layer_norm2 = nn.LayerNorm(d_model) # self.layer_norm3 = nn.LayerNorm(d_model) # self.layer_norm4 = nn.LayerNorm(d_model) # self.dropout2 = nn.Dropout(p=0.1) # self.dropout3 = nn.Dropout(p=0.1) # def forward(self, x, src_mask, tgt_mask, encoder_output): # # Self-attention block # norm = self.layer_norm1(x) # attention = self.multiheadattention(norm, norm, norm, tgt_mask) # x = (x + self.dropout1(attention)) # # Cross-attention block # norm2 = self.layer_norm2(x) # cross_attention = self.crossattention(norm, encoder_output, encoder_output, src_mask) # x = (x + self.dropout2(cross_attention)) # # Feedforward block # norm3 = self.layer_norm3(x) # ff = self.feedforward(norm3) # return x + self.dropout3(ff) # class Decoder(nn.Module): # def __init__(self, number_of_block:int,d_model:int, head:int, d_ff:int) -> None: # super(Decoder, self).__init__() # self.norm = nn.LayerNorm(d_model) # self.decoders = nn.ModuleList([DecoderBlock(d_model, head, d_ff) # for _ in range(number_of_block)]) # def forward(self, x, src_mask, tgt_mask, encoder_output): # for decoder_block in self.decoders: # x = decoder_block(x, src_mask, tgt_mask, encoder_output) # return self.norm(x) # class Transformer(nn.Module): # def __init__(self, seq_len:int, batch:int, d_model:int,target_vocab_size:int, source_vocab_size:int, head: int = 8, d_ff: int = 2048, number_of_block: int = 6, dropout: float = 0.1) -> None: # super(Transformer, self).__init__() # self.encoder = Encoder(number_of_block,d_model, head, d_ff ) # self.decoder = Decoder(number_of_block, d_model, head, d_ff ) # # encoder_self_attention_block = MultiHeadAttentionBlock(d_model, head, dropout) # # feed_forward_block = FeedForwardBlock(d_model, d_ff, dropout) # # self.encoder = Encoder(nn.ModuleList([EncoderBlock(encoder_self_attention_block, feed_forward_block, dropout) for _ in range(number_of_block)])) # # decoder_self_attention_block = MultiHeadAttentionBlock(d_model, head, dropout) # # decoder_cross_attention_block = MultiHeadAttentionBlock(d_model, head, dropout) # # feed_forward_block = FeedForwardBlock(d_model, d_ff, dropout) # # self.decoder = Decoder(nn.ModuleList([DecoderBlock(decoder_self_attention_block, decoder_cross_attention_block, feed_forward_block, dropout) for _ in range(number_of_block) ])) # self.projection = ProjectionLayer(d_model, target_vocab_size) # self.source_embedding = InputEmbeddings(d_model,source_vocab_size ) # self.target_embedding = InputEmbeddings(d_model,target_vocab_size) # self.positional_encoding = PositionalEncoding(seq_len, d_model, dropout) # def encode(self,x, src_mask): # x = self.source_embedding(x) # x = self.positional_encoding(x) # return self.encoder(x, src_mask) # def decode(self,encoder_output, src_mask, x, tgt_mask): # x = self.target_embedding(x) # x = self.positional_encoding(x) # return self.decoder(x, src_mask, tgt_mask, encoder_output) # def project(self, x): # return self.projection(x) # def build_transformer(seq_len, batch, target_vocab_size, source_vocab_size, d_model)-> Transformer: # transformer = Transformer(seq_len, batch, d_model, target_vocab_size, source_vocab_size ) # #Initialize the parameters # for p in transformer.parameters(): # if p.dim() > 1: # nn.init.xavier_uniform_(p) # return transformer