Spaces:
Running
Running
File size: 15,244 Bytes
0372395 5422b18 879cbd2 0372395 879cbd2 0372395 879cbd2 0372395 5220ea7 0372395 5220ea7 879cbd2 0372395 5220ea7 0372395 879cbd2 0372395 5220ea7 879cbd2 0372395 5220ea7 0372395 5422b18 f4cadb2 5220ea7 0372395 5220ea7 0372395 5220ea7 0372395 5220ea7 0372395 5220ea7 0372395 5220ea7 0372395 5220ea7 0372395 5422b18 0372395 5422b18 5220ea7 0372395 5422b18 0372395 5220ea7 5422b18 0372395 5220ea7 0372395 5422b18 0372395 5220ea7 0372395 5422b18 0372395 879cbd2 5220ea7 0372395 f4cadb2 0372395 f4cadb2 5220ea7 879cbd2 5220ea7 0372395 f4cadb2 0372395 5220ea7 0372395 f4cadb2 5220ea7 f4cadb2 0372395 f4cadb2 5220ea7 f4cadb2 0372395 f4cadb2 0372395 5422b18 5220ea7 5422b18 0372395 6c46b68 0372395 6c46b68 0372395 f4cadb2 5220ea7 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 |
import argparse
import os
from pathlib import Path
import logging
import re_matching
logging.getLogger("numba").setLevel(logging.WARNING)
logging.getLogger("markdown_it").setLevel(logging.WARNING)
logging.getLogger("urllib3").setLevel(logging.WARNING)
logging.getLogger("matplotlib").setLevel(logging.WARNING)
logging.basicConfig(
level=logging.INFO, format="| %(name)s | %(levelname)s | %(message)s"
)
logger = logging.getLogger(__name__)
import librosa
import numpy as np
import torch
import torch.nn as nn
from torch.utils.data import Dataset
from torch.utils.data import DataLoader, Dataset
from tqdm import tqdm
from clap_wrapper import get_clap_audio_feature, get_clap_text_feature
import uuid
from flask import Flask, request, jsonify, render_template_string
from flask_cors import CORS
import gradio as gr
import utils
from config import config
import torch
import commons
from text import cleaned_text_to_sequence, get_bert
from text.cleaner import clean_text
import utils
from models import SynthesizerTrn
from text.symbols import symbols
import sys
from scipy.io.wavfile import write
from threading import Thread
net_g = None
device = (
"cuda:0"
if torch.cuda.is_available()
else (
"mps"
if sys.platform == "darwin" and torch.backends.mps.is_available()
else "cpu"
)
)
#device = "cpu"
BandList = {
"PoppinParty":["香澄","有咲","たえ","りみ","沙綾"],
"Afterglow":["蘭","モカ","ひまり","巴","つぐみ"],
"HelloHappyWorld":["こころ","美咲","薫","花音","はぐみ"],
"PastelPalettes":["彩","日菜","千聖","イヴ","麻弥"],
"Roselia":["友希那","紗夜","リサ","燐子","あこ"],
"RaiseASuilen":["レイヤ","ロック","ますき","チュチュ","パレオ"],
"Morfonica":["ましろ","瑠唯","つくし","七深","透子"],
"MyGo":["燈","愛音","そよ","立希","楽奈"],
"AveMujica":["祥子","睦","海鈴","にゃむ","初華"],
"圣翔音乐学园":["華戀","光","香子","雙葉","真晝","純那","克洛迪娜","真矢","奈奈"],
"凛明馆女子学校":["珠緒","壘","文","悠悠子","一愛"],
"弗隆提亚艺术学校":["艾露","艾露露","菈樂菲","司","靜羽"],
"西克菲尔特音乐学院":["晶","未知留","八千代","栞","美帆"]
}
def get_net_g(model_path: str, device: str, hps):
net_g = SynthesizerTrn(
len(symbols),
hps.data.filter_length // 2 + 1,
hps.train.segment_size // hps.data.hop_length,
n_speakers=hps.data.n_speakers,
**hps.model,
).to(device)
_ = net_g.eval()
_ = utils.load_checkpoint(model_path, net_g, None, skip_optimizer=True)
return net_g
def get_text(text, language_str, hps, device, style_text=None, style_weight=0.7):
style_text = None if style_text == "" else style_text
norm_text, phone, tone, word2ph = clean_text(text, language_str)
phone, tone, language = cleaned_text_to_sequence(phone, tone, language_str)
if hps.data.add_blank:
phone = commons.intersperse(phone, 0)
tone = commons.intersperse(tone, 0)
language = commons.intersperse(language, 0)
for i in range(len(word2ph)):
word2ph[i] = word2ph[i] * 2
word2ph[0] += 1
bert_ori = get_bert(
norm_text, word2ph, language_str, device, style_text, style_weight
)
del word2ph
assert bert_ori.shape[-1] == len(phone), phone
if language_str == "ZH":
bert = bert_ori
ja_bert = torch.randn(1024, len(phone))
en_bert = torch.randn(1024, len(phone))
elif language_str == "JP":
bert = torch.randn(1024, len(phone))
ja_bert = bert_ori
en_bert = torch.randn(1024, len(phone))
elif language_str == "EN":
bert = torch.randn(1024, len(phone))
ja_bert = torch.randn(1024, len(phone))
en_bert = bert_ori
else:
raise ValueError("language_str should be ZH, JP or EN")
assert bert.shape[-1] == len(
phone
), f"Bert seq len {bert.shape[-1]} != {len(phone)}"
phone = torch.LongTensor(phone)
tone = torch.LongTensor(tone)
language = torch.LongTensor(language)
return bert, ja_bert, en_bert, phone, tone, language
def infer(
text,
sdp_ratio,
noise_scale,
noise_scale_w,
length_scale,
sid,
style_text=None,
style_weight=0.7,
):
language= 'JP' if is_japanese(text) else 'ZH'
bert, ja_bert, en_bert, phones, tones, lang_ids = get_text(
text,
language,
hps,
device,
style_text=style_text,
style_weight=style_weight,
)
with torch.no_grad():
x_tst = phones.to(device).unsqueeze(0)
tones = tones.to(device).unsqueeze(0)
lang_ids = lang_ids.to(device).unsqueeze(0)
bert = bert.to(device).unsqueeze(0)
ja_bert = ja_bert.to(device).unsqueeze(0)
en_bert = en_bert.to(device).unsqueeze(0)
x_tst_lengths = torch.LongTensor([phones.size(0)]).to(device)
# emo = emo.to(device).unsqueeze(0)
del phones
speakers = torch.LongTensor([hps.data.spk2id[sid]]).to(device)
audio = (
net_g.infer(
x_tst,
x_tst_lengths,
speakers,
tones,
lang_ids,
bert,
ja_bert,
en_bert,
sdp_ratio=sdp_ratio,
noise_scale=noise_scale,
noise_scale_w=noise_scale_w,
length_scale=length_scale,
)[0][0, 0]
.data.cpu()
.float()
.numpy()
)
del (
x_tst,
tones,
lang_ids,
bert,
x_tst_lengths,
speakers,
ja_bert,
en_bert,
) # , emo
if torch.cuda.is_available():
torch.cuda.empty_cache()
return (hps.data.sampling_rate,gr.processing_utils.convert_to_16_bit_wav(audio))
def inferAPI(
text,
sdp_ratio,
noise_scale,
noise_scale_w,
length_scale,
sid,
style_text=None,
style_weight=0.7,
):
language= 'JP' if is_japanese(text) else 'ZH'
bert, ja_bert, en_bert, phones, tones, lang_ids = get_text(
text,
language,
hps,
device,
style_text=style_text,
style_weight=style_weight,
)
with torch.no_grad():
x_tst = phones.to(device).unsqueeze(0)
tones = tones.to(device).unsqueeze(0)
lang_ids = lang_ids.to(device).unsqueeze(0)
bert = bert.to(device).unsqueeze(0)
ja_bert = ja_bert.to(device).unsqueeze(0)
en_bert = en_bert.to(device).unsqueeze(0)
x_tst_lengths = torch.LongTensor([phones.size(0)]).to(device)
# emo = emo.to(device).unsqueeze(0)
del phones
speakers = torch.LongTensor([hps.data.spk2id[sid]]).to(device)
audio = (
net_g.infer(
x_tst,
x_tst_lengths,
speakers,
tones,
lang_ids,
bert,
ja_bert,
en_bert,
sdp_ratio=sdp_ratio,
noise_scale=noise_scale,
noise_scale_w=noise_scale_w,
length_scale=length_scale,
)[0][0, 0]
.data.cpu()
.float()
.numpy()
)
del (
x_tst,
tones,
lang_ids,
bert,
x_tst_lengths,
speakers,
ja_bert,
en_bert,
) # , emo
if torch.cuda.is_available():
torch.cuda.empty_cache()
unique_filename = f"temp{uuid.uuid4()}.wav"
write(unique_filename, 44100, audio)
return unique_filename
def is_japanese(string):
for ch in string:
if ord(ch) > 0x3040 and ord(ch) < 0x30FF:
return True
return False
def loadmodel(model):
try:
_ = net_g.eval()
_ = utils.load_checkpoint(model, net_g, None, skip_optimizer=True)
return "success"
except:
return "error"
Flaskapp = Flask(__name__)
CORS(Flaskapp)
@Flaskapp.route('/')
@Flaskapp.route('/')
def tts():
global last_text, last_model
speaker = request.args.get('speaker')
sdp_ratio = float(request.args.get('sdp_ratio', 0.2))
noise_scale = float(request.args.get('noise_scale', 0.6))
noise_scale_w = float(request.args.get('noise_scale_w', 0.8))
length_scale = float(request.args.get('length_scale', 1))
style_weight = float(request.args.get('style_weight', 0.7))
style_text = request.args.get('style_text', 'happy')
text = request.args.get('text')
is_chat = request.args.get('is_chat', 'false').lower() == 'true'
model = request.args.get('model',modelPaths[-1])
if not speaker or not text:
return render_template_string("""
<!DOCTYPE html>
<html>
<head>
<title>TTS API Documentation</title>
</head>
<body>
<iframe src="http://127.0.0.1:7860" style="width:100%; height:100vh; border:none;"></iframe>
</body>
</html>
""")
if model != last_model:
unique_filename = loadmodel(model)
last_model = model
if is_chat and text == last_text:
# Generate 1 second of silence and return
unique_filename = 'blank.wav'
silence = np.zeros(44100, dtype=np.int16)
write(unique_filename , 44100, silence)
else:
last_text = text
unique_filename = inferAPI(text, sdp_ratio=sdp_ratio, noise_scale=noise_scale, noise_scale_w=noise_scale_w, length_scale=length_scale,sid = speaker, style_text=style_text, style_weight=style_weight)
with open(unique_filename ,'rb') as bit:
wav_bytes = bit.read()
os.remove(unique_filename)
headers = {
'Content-Type': 'audio/wav',
'Text': unique_filename .encode('utf-8')}
return wav_bytes, 200, headers
def gradio_interface():
return app.launch(share=True)
if __name__ == "__main__":
languages = [ "Auto", "ZH", "JP"]
modelPaths = []
for dirpath, dirnames, filenames in os.walk('Data/Data/V23/models/'):
for filename in filenames:
modelPaths.append(os.path.join(dirpath, filename))
hps = utils.get_hparams_from_file('Data/Data/V23/configs/config.json')
net_g = get_net_g(
model_path=modelPaths[-1], device=device, hps=hps
)
speaker_ids = hps.data.spk2id
speakers = list(speaker_ids.keys())
last_text = ""
last_model = modelPaths[-1]
with gr.Blocks() as app:
for band in BandList:
with gr.TabItem(band):
for name in BandList[band]:
with gr.TabItem(name):
with gr.Row():
with gr.Column():
with gr.Row():
gr.Markdown(
'<div align="center">'
f'<img style="width:auto;height:400px;" src="https://mahiruoshi-bangdream-bert-vits2.hf.space/file/image/{name}.png">'
'</div>'
)
length_scale = gr.Slider(
minimum=0.1, maximum=2, value=1, step=0.01, label="语速调节"
)
with gr.Accordion(label="参数设定", open=False):
sdp_ratio = gr.Slider(
minimum=0, maximum=1, value=0.5, step=0.01, label="SDP/DP混合比"
)
noise_scale = gr.Slider(
minimum=0.1, maximum=2, value=0.6, step=0.01, label="感情调节"
)
noise_scale_w = gr.Slider(
minimum=0.1, maximum=2, value=0.667, step=0.01, label="音素长度"
)
speaker = gr.Dropdown(
choices=speakers, value=name, label="说话人"
)
with gr.Accordion(label="切换模型", open=False):
modelstrs = gr.Dropdown(label = "模型", choices = modelPaths, value = modelPaths[0], type = "value")
btnMod = gr.Button("载入模型")
statusa = gr.TextArea()
btnMod.click(loadmodel, inputs=[modelstrs], outputs = [statusa])
with gr.Column():
text = gr.TextArea(
label="输入纯日语或者中文",
placeholder="输入纯日语或者中文",
value="为什么要演奏春日影!",
)
style_text = gr.Textbox(label="辅助文本")
style_weight = gr.Slider(
minimum=0,
maximum=1,
value=0.7,
step=0.1,
label="Weight",
info="主文本和辅助文本的bert混合比率,0表示仅主文本,1表示仅辅助文本",
)
btn = gr.Button("点击生成", variant="primary")
audio_output = gr.Audio(label="Output Audio")
'''
btntran = gr.Button("快速中翻日")
translateResult = gr.TextArea("从这复制翻译后的文本")
btntran.click(translate, inputs=[text], outputs = [translateResult])
'''
btn.click(
infer,
inputs=[
text,
sdp_ratio,
noise_scale,
noise_scale_w,
length_scale,
speaker,
style_text,
style_weight,
],
outputs=[audio_output],
)
api_thread = Thread(target=Flaskapp.run, args=("0.0.0.0", 5000))
gradio_thread = Thread(target=gradio_interface)
gradio_thread.start()
print("推理页面已开启!")
api_thread.start()
print("api页面已开启!运行在5000端口") |