File size: 15,244 Bytes
0372395
 
 
 
 
5422b18
879cbd2
0372395
 
 
 
879cbd2
0372395
 
 
879cbd2
0372395
5220ea7
0372395
 
 
 
 
 
 
5220ea7
 
 
 
 
 
 
879cbd2
0372395
 
5220ea7
0372395
 
 
 
 
879cbd2
0372395
 
 
 
5220ea7
879cbd2
0372395
5220ea7
0372395
 
 
 
 
 
 
5422b18
 
f4cadb2
5220ea7
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
0372395
 
 
 
 
 
 
 
 
 
 
 
 
5220ea7
 
0372395
 
5220ea7
0372395
 
 
 
 
 
 
5220ea7
 
 
0372395
 
 
 
 
5220ea7
 
0372395
5220ea7
0372395
5220ea7
 
 
 
 
0372395
 
 
 
 
 
5422b18
0372395
 
 
 
5422b18
5220ea7
0372395
 
5422b18
 
 
 
0372395
5220ea7
 
5422b18
0372395
 
 
5220ea7
 
 
 
 
 
0372395
5422b18
0372395
 
 
 
 
 
 
5220ea7
0372395
 
 
 
 
 
 
 
 
 
 
 
5422b18
 
 
 
0372395
 
 
 
879cbd2
5220ea7
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
0372395
 
f4cadb2
 
 
0372395
 
 
 
 
 
 
 
f4cadb2
 
 
 
 
 
 
5220ea7
 
 
879cbd2
5220ea7
0372395
 
f4cadb2
0372395
 
 
 
 
5220ea7
 
0372395
f4cadb2
 
 
 
 
 
 
 
 
 
 
5220ea7
f4cadb2
 
 
0372395
f4cadb2
 
 
 
 
 
 
 
 
 
5220ea7
f4cadb2
 
 
0372395
 
f4cadb2
0372395
5422b18
5220ea7
 
5422b18
 
0372395
 
6c46b68
0372395
 
6c46b68
0372395
 
 
 
 
f4cadb2
 
5220ea7
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
import argparse
import os
from pathlib import Path

import logging
import re_matching

logging.getLogger("numba").setLevel(logging.WARNING)
logging.getLogger("markdown_it").setLevel(logging.WARNING)
logging.getLogger("urllib3").setLevel(logging.WARNING)
logging.getLogger("matplotlib").setLevel(logging.WARNING)

logging.basicConfig(
    level=logging.INFO, format="| %(name)s | %(levelname)s | %(message)s"
)

logger = logging.getLogger(__name__)

import librosa
import numpy as np
import torch
import torch.nn as nn
from torch.utils.data import Dataset
from torch.utils.data import DataLoader, Dataset
from tqdm import tqdm
from clap_wrapper import get_clap_audio_feature, get_clap_text_feature

import uuid
from flask import Flask, request, jsonify, render_template_string
from flask_cors import CORS

import gradio as gr

import utils
from config import config

import torch
import commons
from text import cleaned_text_to_sequence, get_bert
from text.cleaner import clean_text
import utils

from models import SynthesizerTrn
from text.symbols import symbols
import sys
from scipy.io.wavfile import write
from threading import Thread

net_g = None

device = (
        "cuda:0"
        if torch.cuda.is_available()
        else (
            "mps"
            if sys.platform == "darwin" and torch.backends.mps.is_available()
            else "cpu"
        )
    )

#device = "cpu"
BandList = {
        "PoppinParty":["香澄","有咲","たえ","りみ","沙綾"],
        "Afterglow":["蘭","モカ","ひまり","巴","つぐみ"],
        "HelloHappyWorld":["こころ","美咲","薫","花音","はぐみ"],
        "PastelPalettes":["彩","日菜","千聖","イヴ","麻弥"],
        "Roselia":["友希那","紗夜","リサ","燐子","あこ"],
        "RaiseASuilen":["レイヤ","ロック","ますき","チュチュ","パレオ"],
        "Morfonica":["ましろ","瑠唯","つくし","七深","透子"],
        "MyGo":["燈","愛音","そよ","立希","楽奈"],
        "AveMujica":["祥子","睦","海鈴","にゃむ","初華"],
        "圣翔音乐学园":["華戀","光","香子","雙葉","真晝","純那","克洛迪娜","真矢","奈奈"],
        "凛明馆女子学校":["珠緒","壘","文","悠悠子","一愛"],
        "弗隆提亚艺术学校":["艾露","艾露露","菈樂菲","司","靜羽"],
        "西克菲尔特音乐学院":["晶","未知留","八千代","栞","美帆"]
}

def get_net_g(model_path: str,  device: str, hps):
    net_g = SynthesizerTrn(
        len(symbols),
        hps.data.filter_length // 2 + 1,
        hps.train.segment_size // hps.data.hop_length,
        n_speakers=hps.data.n_speakers,
        **hps.model,
    ).to(device)
    _ = net_g.eval()
    _ = utils.load_checkpoint(model_path, net_g, None, skip_optimizer=True)
    return net_g

def get_text(text, language_str, hps, device, style_text=None, style_weight=0.7):
    style_text = None if style_text == "" else style_text
    norm_text, phone, tone, word2ph = clean_text(text, language_str)
    phone, tone, language = cleaned_text_to_sequence(phone, tone, language_str)

    if hps.data.add_blank:
        phone = commons.intersperse(phone, 0)
        tone = commons.intersperse(tone, 0)
        language = commons.intersperse(language, 0)
        for i in range(len(word2ph)):
            word2ph[i] = word2ph[i] * 2
        word2ph[0] += 1
    bert_ori = get_bert(
        norm_text, word2ph, language_str, device, style_text, style_weight
    )
    del word2ph
    assert bert_ori.shape[-1] == len(phone), phone

    if language_str == "ZH":
        bert = bert_ori
        ja_bert = torch.randn(1024, len(phone))
        en_bert = torch.randn(1024, len(phone))
    elif language_str == "JP":
        bert = torch.randn(1024, len(phone))
        ja_bert = bert_ori
        en_bert = torch.randn(1024, len(phone))
    elif language_str == "EN":
        bert = torch.randn(1024, len(phone))
        ja_bert = torch.randn(1024, len(phone))
        en_bert = bert_ori
    else:
        raise ValueError("language_str should be ZH, JP or EN")

    assert bert.shape[-1] == len(
        phone
    ), f"Bert seq len {bert.shape[-1]} != {len(phone)}"

    phone = torch.LongTensor(phone)
    tone = torch.LongTensor(tone)
    language = torch.LongTensor(language)
    return bert, ja_bert, en_bert, phone, tone, language


def infer(
    text,
    sdp_ratio,
    noise_scale,
    noise_scale_w,
    length_scale,
    sid,
    style_text=None,
    style_weight=0.7,
):

    language= 'JP' if is_japanese(text) else 'ZH'
    bert, ja_bert, en_bert, phones, tones, lang_ids = get_text(
        text,
        language,
        hps,
        device,
        style_text=style_text,
        style_weight=style_weight,
    )
    with torch.no_grad():
        x_tst = phones.to(device).unsqueeze(0)
        tones = tones.to(device).unsqueeze(0)
        lang_ids = lang_ids.to(device).unsqueeze(0)
        bert = bert.to(device).unsqueeze(0)
        ja_bert = ja_bert.to(device).unsqueeze(0)
        en_bert = en_bert.to(device).unsqueeze(0)
        x_tst_lengths = torch.LongTensor([phones.size(0)]).to(device)
        # emo = emo.to(device).unsqueeze(0)
        del phones
        speakers = torch.LongTensor([hps.data.spk2id[sid]]).to(device)
        audio = (
            net_g.infer(
                x_tst,
                x_tst_lengths,
                speakers,
                tones,
                lang_ids,
                bert,
                ja_bert,
                en_bert,
                sdp_ratio=sdp_ratio,
                noise_scale=noise_scale,
                noise_scale_w=noise_scale_w,
                length_scale=length_scale,
            )[0][0, 0]
            .data.cpu()
            .float()
            .numpy()
        )
        del (
            x_tst,
            tones,
            lang_ids,
            bert,
            x_tst_lengths,
            speakers,
            ja_bert,
            en_bert,
        )  # , emo
        if torch.cuda.is_available():
            torch.cuda.empty_cache()
        return (hps.data.sampling_rate,gr.processing_utils.convert_to_16_bit_wav(audio))

def inferAPI(
    text,
    sdp_ratio,
    noise_scale,
    noise_scale_w,
    length_scale,
    sid,
    style_text=None,
    style_weight=0.7,
):

    language= 'JP' if is_japanese(text) else 'ZH'
    bert, ja_bert, en_bert, phones, tones, lang_ids = get_text(
        text,
        language,
        hps,
        device,
        style_text=style_text,
        style_weight=style_weight,
    )
    with torch.no_grad():
        x_tst = phones.to(device).unsqueeze(0)
        tones = tones.to(device).unsqueeze(0)
        lang_ids = lang_ids.to(device).unsqueeze(0)
        bert = bert.to(device).unsqueeze(0)
        ja_bert = ja_bert.to(device).unsqueeze(0)
        en_bert = en_bert.to(device).unsqueeze(0)
        x_tst_lengths = torch.LongTensor([phones.size(0)]).to(device)
        # emo = emo.to(device).unsqueeze(0)
        del phones
        speakers = torch.LongTensor([hps.data.spk2id[sid]]).to(device)
        audio = (
            net_g.infer(
                x_tst,
                x_tst_lengths,
                speakers,
                tones,
                lang_ids,
                bert,
                ja_bert,
                en_bert,
                sdp_ratio=sdp_ratio,
                noise_scale=noise_scale,
                noise_scale_w=noise_scale_w,
                length_scale=length_scale,
            )[0][0, 0]
            .data.cpu()
            .float()
            .numpy()
        )
        del (
            x_tst,
            tones,
            lang_ids,
            bert,
            x_tst_lengths,
            speakers,
            ja_bert,
            en_bert,
        )  # , emo
        if torch.cuda.is_available():
            torch.cuda.empty_cache()
        unique_filename = f"temp{uuid.uuid4()}.wav"
        write(unique_filename, 44100, audio)
        return unique_filename

def is_japanese(string):
        for ch in string:
            if ord(ch) > 0x3040 and ord(ch) < 0x30FF:
                return True
        return False

def loadmodel(model):
    try:
        _ = net_g.eval()
        _ = utils.load_checkpoint(model, net_g, None, skip_optimizer=True)
        return "success"
    except:
        return "error"

Flaskapp = Flask(__name__)
CORS(Flaskapp)
@Flaskapp.route('/')

@Flaskapp.route('/')

def tts():
    global last_text, last_model
    speaker = request.args.get('speaker')
    sdp_ratio = float(request.args.get('sdp_ratio', 0.2))
    noise_scale = float(request.args.get('noise_scale', 0.6))
    noise_scale_w = float(request.args.get('noise_scale_w', 0.8))
    length_scale = float(request.args.get('length_scale', 1))
    style_weight = float(request.args.get('style_weight', 0.7))
    style_text = request.args.get('style_text', 'happy')
    text = request.args.get('text')
    is_chat = request.args.get('is_chat', 'false').lower() == 'true'
    model = request.args.get('model',modelPaths[-1])
    
    if not speaker or not text:
        return render_template_string("""
            <!DOCTYPE html>
            <html>
            <head>
                <title>TTS API Documentation</title>
            </head>
            <body>
                <iframe src="http://127.0.0.1:7860" style="width:100%; height:100vh; border:none;"></iframe>
            </body>
            </html>
        """)
    
    if model != last_model:
        unique_filename  = loadmodel(model)
        last_model = model
    if is_chat and text == last_text:
        # Generate 1 second of silence and return
        unique_filename = 'blank.wav'
        silence = np.zeros(44100, dtype=np.int16)
        write(unique_filename , 44100, silence)
    else:
        last_text = text
        unique_filename  = inferAPI(text, sdp_ratio=sdp_ratio, noise_scale=noise_scale, noise_scale_w=noise_scale_w, length_scale=length_scale,sid = speaker, style_text=style_text, style_weight=style_weight)
    with open(unique_filename ,'rb') as bit:
        wav_bytes = bit.read()
    os.remove(unique_filename)
    headers = {
            'Content-Type': 'audio/wav',
            'Text': unique_filename .encode('utf-8')}
    return wav_bytes, 200, headers

def gradio_interface():
    return app.launch(share=True)

if __name__ == "__main__":
    languages = [ "Auto", "ZH", "JP"]
    modelPaths = []
    for dirpath, dirnames, filenames in os.walk('Data/Data/V23/models/'):
        for filename in filenames:
            modelPaths.append(os.path.join(dirpath, filename))
    hps = utils.get_hparams_from_file('Data/Data/V23/configs/config.json')
    net_g = get_net_g(
        model_path=modelPaths[-1], device=device, hps=hps
    )
    speaker_ids = hps.data.spk2id
    speakers = list(speaker_ids.keys())
    last_text = ""
    last_model = modelPaths[-1]
    with gr.Blocks() as app:
        for band in BandList:
            with gr.TabItem(band):
                for name in BandList[band]:
                    with gr.TabItem(name):
                        with gr.Row():
                            with gr.Column():
                                with gr.Row():
                                    gr.Markdown(
                                        '<div align="center">'
                                        f'<img style="width:auto;height:400px;" src="https://mahiruoshi-bangdream-bert-vits2.hf.space/file/image/{name}.png">' 
                                        '</div>'
                                    )
                                length_scale = gr.Slider(
                                        minimum=0.1, maximum=2, value=1, step=0.01, label="语速调节"
                                    )
                                with gr.Accordion(label="参数设定", open=False):
                                    sdp_ratio = gr.Slider(
                                    minimum=0, maximum=1, value=0.5, step=0.01, label="SDP/DP混合比"
                                    )
                                    noise_scale = gr.Slider(
                                        minimum=0.1, maximum=2, value=0.6, step=0.01, label="感情调节"
                                    )
                                    noise_scale_w = gr.Slider(
                                        minimum=0.1, maximum=2, value=0.667, step=0.01, label="音素长度"
                                    )
                                    speaker = gr.Dropdown(
                                        choices=speakers, value=name, label="说话人"
                                    ) 
                                with gr.Accordion(label="切换模型", open=False):
                                    modelstrs = gr.Dropdown(label = "模型", choices = modelPaths, value = modelPaths[0], type = "value")
                                    btnMod = gr.Button("载入模型")
                                    statusa = gr.TextArea()
                                    btnMod.click(loadmodel, inputs=[modelstrs], outputs = [statusa])
                            with gr.Column():
                                text = gr.TextArea(
                                    label="输入纯日语或者中文",
                                    placeholder="输入纯日语或者中文",
                                    value="为什么要演奏春日影!",
                                )
                                style_text = gr.Textbox(label="辅助文本")
                                style_weight = gr.Slider(
                                        minimum=0,
                                        maximum=1,
                                        value=0.7,
                                        step=0.1,
                                        label="Weight",
                                        info="主文本和辅助文本的bert混合比率,0表示仅主文本,1表示仅辅助文本",
                                    )
                                btn = gr.Button("点击生成", variant="primary")
                                audio_output = gr.Audio(label="Output Audio")
                                '''
                                btntran = gr.Button("快速中翻日")
                                translateResult = gr.TextArea("从这复制翻译后的文本")
                                btntran.click(translate, inputs=[text], outputs = [translateResult])
                                '''
                    btn.click(
                        infer,
                        inputs=[
                            text,
                            sdp_ratio,
                            noise_scale,
                            noise_scale_w,
                            length_scale,
                            speaker,
                            style_text,
                            style_weight,
                        ],
                        outputs=[audio_output],
                    )

    api_thread = Thread(target=Flaskapp.run, args=("0.0.0.0", 5000))
    gradio_thread = Thread(target=gradio_interface)
    gradio_thread.start()
    print("推理页面已开启!")
    api_thread.start()
    print("api页面已开启!运行在5000端口")